1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 19

Linear maps

Definition 1. Suppose that V and W are two vector spaces. A function $\varphi: \mathrm{V} \rightarrow \mathrm{W}$ is said to be a linear map, or a linear operator, if

- for $v_{1}, v_{2} \in \mathrm{~V}$, we have $\varphi\left(v_{1}+v_{2}\right)=\varphi\left(v_{1}\right)+\varphi\left(v_{2}\right)$,
- for $c \in \mathbb{R}, v \in \mathrm{~V}$, we have $\varphi(\mathrm{c} \cdot v)=\mathrm{c} \cdot \varphi(v)$.

Lemma 1. Suppose that φ is a linear map. Then $\varphi(0)=0$, and $\varphi(-v)=-\varphi(v)$.
Proof. This follows from $0 \cdot v=0$ and $(-1) \cdot v=-v$.
Definition 2. Let $\varphi: V \rightarrow W$ be a linear operator, and let e_{1}, \ldots, e_{n} and f_{1}, \ldots, f_{m} be bases of V and W respectively. Let us compute coordinates of the vectors $\varphi\left(e_{i}\right)$ with respect to the basis f_{1}, \ldots, f_{m} :

$$
\begin{gathered}
\varphi\left(e_{1}\right)=a_{11} f_{1}+a_{21} f_{2}+\cdots+a_{m 1} f_{m} \\
\varphi\left(e_{2}\right)=a_{12} f_{1}+a_{22} f_{2}+\cdots+a_{m 2} f_{m} \\
\ldots \\
\varphi\left(e_{n}\right)=a_{1 n} f_{1}+a_{2 n} f_{2}+\cdots+a_{m n} f_{m}
\end{gathered}
$$

The matrix

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \ldots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

is called the matrix of the linear operator φ with respect to the given bases, and denoted $A_{\varphi, \mathbf{e}, \mathbf{f}}$. For each k, its k-th column is the column of coordinates of image $f\left(e_{k}\right)$.

Similarly to how we proved it for transition matrices, we have the following result.
Lemma 2. Let $\varphi: \mathrm{V} \rightarrow \mathrm{W}$ be a linear operator, and let $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}$ and $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}}$ be bases of V and W respectively. Suppose that $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ are coordinates of some vector \mathbf{v} relative to the basis $\mathrm{e}_{1}, \ldots, e_{\mathrm{n}}$, and $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}$ are coordinates of $\varphi(\mathbf{v})$ relative to the basis $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}}$. Then

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=A_{\varphi, \mathrm{e}, \mathrm{f}}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

or, in other words,

$$
(\varphi(\mathbf{v}))_{\mathbf{f}}=\mathcal{A}_{\varphi, \mathbf{e}, \mathbf{f}} \mathbf{v}_{\mathbf{e}}
$$

Proof. The proof is indeed very analogous to the one for transition matrices: we have

$$
\mathbf{v}=x_{1} e_{1}+\cdots+x_{n} e_{n}
$$

so that

$$
\varphi(\mathbf{v})=x_{1} \varphi\left(e_{1}\right)+\cdots+x_{n} \varphi\left(e_{n}\right)
$$

Substituting the expansion of $f\left(e_{i}\right)$'s in terms of f_{j} 's, we get

$$
\begin{aligned}
\varphi(\mathbf{v})= & x_{1}\left(a_{11} f_{1}+a_{21} f_{2}+\cdots+a_{m 1} f_{m}\right)+\cdots+x_{n}\left(a_{1 n} f_{1}+a_{2 n} f_{2}+\cdots+a_{m n} f_{m}\right)= \\
& =\left(a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}\right) f_{1}+\cdots+\left(a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}\right) f_{n}
\end{aligned}
$$

Since we know that coordinates are uniquely defined, we conclude that

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=y_{1} \\
\cdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=y_{n}
\end{gathered}
$$

which is what we want to prove.
The next statement is also similar to the corresponding one for transition matrices; it also generalises the statement that in the case of coordinate vector spaces product of matrices corresponds to composition of linear maps. In some sense, this is a central result about linear maps (which also justifies the definition of matrix products).

Theorem 1. Let U, V, and W be vector spaces, and let $\psi: \mathrm{U} \rightarrow \mathrm{V}$ and $\varphi: \mathrm{V} \rightarrow \mathrm{W}$ be linear operators. Suppose that $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}, \mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}}$, and $\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{k}}$ are bases of U, V, and W respectively. Let us consider the composite map $\varphi \circ \psi: \mathrm{U} \rightarrow \mathrm{W}, \varphi \circ \psi(\mathrm{u})=\varphi(\psi(\mathrm{u}))$. Then

1. $\varphi \circ \psi$ is a linear map;
2. we have

$$
A_{\varphi \circ \psi, \mathbf{e}, \mathrm{g}}=A_{\varphi, \mathbf{f}, \mathrm{g}} \mathcal{A}_{\psi, \mathbf{e}, \mathbf{f}}
$$

Proof. First, let us note that

$$
\begin{aligned}
(\varphi \circ \psi)\left(u_{1}+u_{2}\right)= & \varphi\left(\psi\left(u_{1}+u_{2}\right)\right)=\varphi\left(\psi\left(u_{1}\right)+\psi\left(u_{2}\right)\right)=\varphi\left(\psi\left(u_{1}\right)\right)+\varphi\left(\psi\left(u_{2}\right)\right)=(\varphi \circ \psi)\left(u_{1}\right)+(\varphi \circ \psi)\left(u_{2}\right) \\
& (\varphi \circ \psi)(c \cdot u)=\varphi(\psi(c \cdot u))=\varphi(c \psi(u))=c \varphi(\psi(u))=c(\varphi \circ \psi)(u)
\end{aligned}
$$

so $\varphi \circ \psi$ is a linear map.
Let us prove the second statement. We take a vector $\mathbf{u} \in \mathrm{U}$, and apply the formula of Lemma 2. On the one hand, we have

$$
(\varphi \circ \psi(\mathbf{u}))_{\mathbf{g}}=A_{\varphi \circ \psi, \mathbf{e}, \mathbf{g}} \mathbf{u}_{\mathbf{e}}
$$

On the other hand, we obtain,

$$
(\varphi \circ \psi(\mathbf{u}))_{\mathbf{g}}=(\varphi(\psi(\mathbf{u})))_{\mathbf{g}}=A_{\varphi, \mathbf{f}, \mathbf{g}}\left(\psi(\mathbf{u})_{\mathbf{f}}\right)=A_{\varphi, \mathbf{f}, \mathbf{g}}\left(A_{\psi, \mathbf{e}, \mathbf{f}} \mathbf{u}_{\mathbf{e}}\right)=\left(A_{\varphi, \mathbf{f}, \mathbf{g}} A_{\psi, \mathbf{e}, \mathbf{f}}\right) \mathbf{u}_{\mathbf{e}}
$$

Therefore

$$
A_{\varphi \circ \psi, \mathbf{e}, \mathbf{g}} \mathbf{u}_{\mathbf{e}}=\left(A_{\varphi, \mathbf{f}, \mathbf{g}} A_{\psi, \mathbf{e}, \mathbf{f}}\right) \mathbf{u}_{\mathbf{e}}
$$

for every $u_{\mathbf{e}}$. From our previous classes we know that knowing $A \mathbf{v}$ for all vectors \mathbf{v} completely determines the matrix A, so

$$
A_{\varphi \circ \psi, \mathbf{e}, \mathbf{g}}=A_{\varphi, \mathbf{f}, \mathbf{g}} A_{\psi, \mathbf{e}, \mathbf{f}}
$$

as required.

