1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 19

Linear maps

Definition 1. Suppose that V and W are two vector spaces. A function $\varphi: V \to W$ is said to be a *linear* map, or a *linear operator*, if

- for $v_1, v_2 \in V$, we have $\phi(v_1 + v_2) = \phi(v_1) + \phi(v_2)$,
- for $c \in \mathbb{R}$, $v \in V$, we have $\phi(c \cdot v) = c \cdot \phi(v)$.

Lemma 1. Suppose that φ is a linear map. Then $\varphi(0) = 0$, and $\varphi(-\nu) = -\varphi(\nu)$.

Proof. This follows from $0 \cdot v = 0$ and $(-1) \cdot v = -v$.

Definition 2. Let $\varphi: V \to W$ be a linear operator, and let e_1, \ldots, e_n and f_1, \ldots, f_m be bases of V and W respectively. Let us compute coordinates of the vectors $\varphi(e_i)$ with respect to the basis f_1, \ldots, f_m :

$$\begin{split} \phi(e_1) &= a_{11}f_1 + a_{21}f_2 + \dots + a_{m1}f_m, \\ \phi(e_2) &= a_{12}f_1 + a_{22}f_2 + \dots + a_{m2}f_m, \\ & \dots \\ \phi(e_n) &= a_{1n}f_1 + a_{2n}f_2 + \dots + a_{mn}f_m. \end{split}$$

The matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \dots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

is called the matrix of the linear operator φ with respect to the given bases, and denoted $A_{\varphi,e,f}$. For each k, its k-th column is the column of coordinates of image $f(e_k)$.

Similarly to how we proved it for transition matrices, we have the following result.

Lemma 2. Let $\varphi: V \to W$ be a linear operator, and let e_1, \ldots, e_n and f_1, \ldots, f_m be bases of V and W respectively. Suppose that x_1, \ldots, x_n are coordinates of some vector v relative to the basis e_1, \ldots, e_n , and y_1, \ldots, y_m are coordinates of $\varphi(v)$ relative to the basis f_1, \ldots, f_m . Then

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = A_{\varphi, \mathbf{e}, \mathbf{f}} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},$$

or, in other words,

$$(\varphi(\mathbf{v}))_{\mathbf{f}} = A_{\varphi,\mathbf{e},\mathbf{f}}\mathbf{v}_{\mathbf{e}}.$$

Proof. The proof is indeed very analogous to the one for transition matrices: we have

$$\mathbf{v} = x_1 e_1 + \cdots + x_n e_n,$$

so that

$$\varphi(\mathbf{v}) = x_1 \varphi(e_1) + \cdots + x_n \varphi(e_n).$$

Substituting the expansion of $f(e_i)$'s in terms of f_i 's, we get

$$\varphi(\mathbf{v}) = x_1(a_{11}f_1 + a_{21}f_2 + \dots + a_{m1}f_m) + \dots + x_n(a_{1n}f_1 + a_{2n}f_2 + \dots + a_{mn}f_m) = (a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n)f_1 + \dots + (a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n)f_n.$$

Since we know that coordinates are uniquely defined, we conclude that

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = y_1,$$

...
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = y_n,$

which is what we want to prove.

The next statement is also similar to the corresponding one for transition matrices; it also generalises the statement that in the case of coordinate vector spaces product of matrices corresponds to composition of linear maps. In some sense, this is a central result about linear maps (which also justifies the definition of matrix products).

Theorem 1. Let U, V, and W be vector spaces, and let $\psi: U \to V$ and $\varphi: V \to W$ be linear operators. Suppose that e_1, \ldots, e_n , f_1, \ldots, f_m , and g_1, \ldots, g_k are bases of U, V, and W respectively. Let us consider the composite map $\varphi \circ \psi: U \to W$, $\varphi \circ \psi(u) = \varphi(\psi(u))$. Then

1. $\phi \circ \psi$ is a linear map; 2. we have

$$A_{\varphi \circ \psi, \mathbf{e}, \mathbf{g}} = A_{\varphi, \mathbf{f}, \mathbf{g}} A_{\psi, \mathbf{e}, \mathbf{f}}.$$

Proof. First, let us note that

$$\begin{aligned} (\phi \circ \psi)(\mathfrak{u}_1 + \mathfrak{u}_2) &= \phi(\psi(\mathfrak{u}_1 + \mathfrak{u}_2)) = \phi(\psi(\mathfrak{u}_1) + \psi(\mathfrak{u}_2)) = \phi(\psi(\mathfrak{u}_1)) + \phi(\psi(\mathfrak{u}_2)) = (\phi \circ \psi)(\mathfrak{u}_1) + (\phi \circ \psi)(\mathfrak{u}_2) \\ (\phi \circ \psi)(\mathfrak{c} \cdot \mathfrak{u}) &= \phi(\psi(\mathfrak{c} \cdot \mathfrak{u})) = \phi(\mathfrak{c}\psi(\mathfrak{u})) = \mathfrak{c}\phi(\psi(\mathfrak{u})) = \mathfrak{c}(\phi \circ \psi)(\mathfrak{u}), \end{aligned}$$

so $\varphi \circ \psi$ is a linear map.

Let us prove the second statement. We take a vector $\mathbf{u} \in \mathbf{U}$, and apply the formula of Lemma 2. On the one hand, we have

$$(\phi \circ \psi(\mathbf{u}))_{\mathbf{g}} = A_{\phi \circ \psi, \mathbf{e}, \mathbf{g}} \mathbf{u}_{\mathbf{e}}.$$

On the other hand, we obtain,

$$(\phi \circ \psi(\mathbf{u}))_{\mathbf{g}} = (\phi(\psi(\mathbf{u})))_{\mathbf{g}} = A_{\phi, \mathbf{f}, \mathbf{g}}(\psi(\mathbf{u})_{\mathbf{f}}) = A_{\phi, \mathbf{f}, \mathbf{g}}(A_{\psi, \mathbf{e}, \mathbf{f}}\mathbf{u}_{\mathbf{e}}) = (A_{\phi, \mathbf{f}, \mathbf{g}}A_{\psi, \mathbf{e}, \mathbf{f}})\mathbf{u}_{\mathbf{e}}.$$

Therefore

$$A_{\phi \circ \psi, \mathbf{e}, \mathbf{g}} \mathbf{u}_{\mathbf{e}} = (A_{\phi, \mathbf{f}, \mathbf{g}} A_{\psi, \mathbf{e}, \mathbf{f}}) \mathbf{u}_{\mathbf{e}}$$

for every $u_e.$ From our previous classes we know that knowing $A\mathbf{v}$ for all vectors \mathbf{v} completely determines the matrix A, so

$$A_{\varphi \circ \psi, \mathbf{e}, \mathbf{g}} = A_{\varphi, \mathbf{f}, \mathbf{g}} A_{\psi, \mathbf{e}, \mathbf{f}},$$

as required.