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Lecture 20

Linear maps and change of coordinates

As a last step, let us exhibit how matrices of linear maps transform under changes of coordinates.

Lemma 1. Let @: V — W be a linear operator, and suppose that ey,...,en and ej,...,e. are two bases of
V, and f1,...,fm and f],...,f. are two bases of W. Then

Age fr =Mp fAg e fMee = M{}/A@,e,fMe,e/-
Proof. Let us take a vector v € V. On the one hand, the formula of Lemma 2 tells us that
(V) = Ager Ve
On the other hand, applying various results we proved earlier, we have
(V) =Mprg(@(V)e) = Mer (A eeVe) = Mer £(Ag e, e(MeerVer)) = (Mg g A e fMeer ) Ver.

Therefore,
A(p,e’,f’ve’ = (Mf’,fAnp,e,fMe,e’)Ve’

for every ve/. From our previous classes we know that knowing Av for all vectors v completely determines
the matrix A, so
A(p,e’,f’ = (Mf"fAcp,e‘fMe,e’) = (ME;/A@,e,fMe,e’)

because of properties of transition matrices proved earlier. O

Remark 1. Our formula
Ago,e’,f/ = Mf’,fA(p,e,fMe,e’-

shows that changing from the coordinate systems e, f to some other coordinate system amounts to multiply-
ing the matrix Ay o,r by some invertible matrices on the left and on the right, so effectively to performing
a certain number of elementary row and column operations on this matrix. This is very useful (but not
applicable to a more narrow class of linear transformations, see below).

Remark 2. A linear operator @: V — V is often called a linear transformation. For a linear transformation,
it makes sense to use the same coordinate system for the input and the output. By definition, the matrix of
a linear operator @: V — V relative to the basis eq,...,eq is

Age = Agee-
Lemma 2. For a linear transformation @:V — V, and two bases ey,...,en and ef,...,e, of V, we have
—1
Agper = Mg eiAgeMeser

Proof. This is a particular case of Lemma 1. O



Remark 3. Proposition 5 shows that for a square matrix A, the change A — C~'AC with an invertible
matrix C, corresponds to the situation where A is viewed as a matrix of a linear transformation, and C
is viewed as a transition matrix for a coordinate change. You verified in your earlier home assignments
that tr(C"'AC) = tr(A) and det(C~'AC) = det(A); these properties imply that the trace and the deter-
minant do not depend on the choice of coordinates, and hence reflect some geometric properties of a linear
transformation. (In case of the determinant, those properties have been hinted at in our previous classes:
determinants compute how a linear transformation changes volumes of solids).

Examples of linear maps and coordinate changes

Example 1. As we know, every linear map @: R™ — R¥ is given by a k x n-matrix A, so that @(x) = Ax.

Example 2. Let V be the vector space of all polynomials in one variable x. Consider the function ¢: V — V
that maps every polynomial f(x) to xf(x). This is a linear map:

x(f1(x) + f2(x)) = xfy (x) + xfa(x),
x(cf(x)) = c(xf(x)).

Example 3. Let V be the vector space of all polynomials in one variable x. Consider the function {: V — V
that maps every polynomial f(x) to f/(x). This is a linear map:

(f1(x) + f2(x))" = 1 (x) + f3(x),
(cf(x)) = cf’(x).
Example 4. Let V be the vector space of all polynomials in one variable x. Consider the function oc: V. — V

that maps every polynomial f(x) to 3f(x)f’(x). This is not a linear map; for example, 1 — 0, x — 3x, but
x+1—3(x+1)=3x+3#3x+0.



