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Lecture 20

Linear maps and change of coordinates

As a last step, let us exhibit how matrices of linear maps transform under changes of coordinates.

Lemma 1. Let ϕ : V →W be a linear operator, and suppose that e1, . . . , en and e ′1, . . . , e
′
n are two bases of

V, and f1, . . . , fm and f ′1, . . . , f
′
m are two bases of W. Then

Aϕ,e ′,f ′ =Mf ′,fAϕ,e,fMe,e ′ =M−1
f ,f ′Aϕ,e,fMe,e ′ .

Proof. Let us take a vector v ∈ V. On the one hand, the formula of Lemma 2 tells us that

(ϕ(v))f ′ = Aϕ,e ′,f ′ve ′ .

On the other hand, applying various results we proved earlier, we have

(ϕ(v))f ′ =Mf ′,f (ϕ(v)f ) =Mf ′,f (Aϕ,e,fve) =Mf ′,f (Aϕ,e,f (Me,e ′ve ′)) = (Mf ′,fAϕ,e,fMe,e ′)ve ′ .

Therefore,
Aϕ,e ′,f ′ve ′ = (Mf ′,fAϕ,e,fMe,e ′)ve ′

for every ve ′ . From our previous classes we know that knowing Av for all vectors v completely determines
the matrix A, so

Aϕ,e ′,f ′ = (Mf ′,fAϕ,e,fMe,e ′) = (M−1
f ,f ′Aϕ,e,fMe,e ′)

because of properties of transition matrices proved earlier.

Remark 1. Our formula
Aϕ,e ′,f ′ =Mf ′,fAϕ,e,fMe,e ′ .

shows that changing from the coordinate systems e, f to some other coordinate system amounts to multiply-
ing the matrix Aϕ,e,f by some invertible matrices on the left and on the right, so effectively to performing
a certain number of elementary row and column operations on this matrix. This is very useful (but not
applicable to a more narrow class of linear transformations, see below).

Remark 2. A linear operator ϕ : V → V is often called a linear transformation. For a linear transformation,
it makes sense to use the same coordinate system for the input and the output. By definition, the matrix of
a linear operator ϕ : V → V relative to the basis e1, . . . , en is

Aϕ,e := Aϕ,e,e.

Lemma 2. For a linear transformation ϕ : V → V, and two bases e1, . . . , en and e ′1, . . . , e
′
n of V, we have

Aϕ,e ′ =M−1
e,e ′Aϕ,eMe,e ′ .

Proof. This is a particular case of Lemma 1.
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Remark 3. Proposition 5 shows that for a square matrix A, the change A 7→ C−1AC with an invertible
matrix C, corresponds to the situation where A is viewed as a matrix of a linear transformation, and C
is viewed as a transition matrix for a coordinate change. You verified in your earlier home assignments
that tr(C−1AC) = tr(A) and det(C−1AC) = det(A); these properties imply that the trace and the deter-
minant do not depend on the choice of coordinates, and hence reflect some geometric properties of a linear
transformation. (In case of the determinant, those properties have been hinted at in our previous classes:
determinants compute how a linear transformation changes volumes of solids).

Examples of linear maps and coordinate changes

Example 1. As we know, every linear map ϕ : Rn → Rk is given by a k× n-matrix A, so that ϕ(x) = Ax.

Example 2. Let V be the vector space of all polynomials in one variable x. Consider the function ϕ : V → V
that maps every polynomial f(x) to xf(x). This is a linear map:

x(f1(x) + f2(x)) = xf1(x) + xf2(x),

x(cf(x)) = c(xf(x)).

Example 3. Let V be the vector space of all polynomials in one variable x. Consider the function ψ : V → V
that maps every polynomial f(x) to f ′(x). This is a linear map:

(f1(x) + f2(x))
′ = f ′1(x) + f

′
2(x),

(cf(x)) ′ = cf ′(x).

Example 4. Let V be the vector space of all polynomials in one variable x. Consider the function α : V → V
that maps every polynomial f(x) to 3f(x)f ′(x). This is not a linear map; for example, 1 7→ 0, x 7→ 3x, but
x+ 1 7→ 3(x+ 1) = 3x+ 3 6= 3x+ 0.
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