1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 20

Linear maps and change of coordinates

As a last step, let us exhibit how matrices of linear maps transform under changes of coordinates.
Lemma 1. Let $\varphi: V \rightarrow W$ be a linear operator, and suppose that e_{1}, \ldots, e_{n} and $e_{1}^{\prime}, \ldots, e_{n}^{\prime}$ are two bases of V , and $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}}$ and $\mathrm{f}_{1}^{\prime}, \ldots, \mathrm{f}_{\mathrm{m}}^{\prime}$ are two bases of W . Then

$$
A_{\varphi, \mathbf{e}^{\prime}, \mathbf{f}^{\prime}}=M_{\mathbf{f}^{\prime}, \mathbf{f}} A_{\varphi, \mathbf{e}, \mathbf{f}} M_{\mathbf{e}, \mathbf{e}^{\prime}}=M_{\mathbf{f}, \mathbf{f}^{\prime}}^{-1} A_{\varphi, \mathbf{e}, \mathbf{f}} M_{\mathbf{e}, \mathbf{e}^{\prime}}
$$

Proof. Let us take a vector $\mathbf{v} \in \mathrm{V}$. On the one hand, the formula of Lemma 2 tells us that

$$
(\varphi(\mathbf{v}))_{f^{\prime}}=\mathcal{A}_{\varphi, \mathbf{e}^{\prime}, \mathbf{f}^{\prime}} \mathbf{v}_{\mathbf{e}^{\prime}}
$$

On the other hand, applying various results we proved earlier, we have

$$
(\varphi(\mathbf{v}))_{\mathbf{f}^{\prime}}=M_{\mathbf{f}^{\prime}, \mathbf{f}}\left(\varphi(\mathbf{v})_{\mathbf{f}}\right)=M_{\mathbf{f}^{\prime}, \mathbf{f}}\left(\mathcal{A}_{\varphi, \mathbf{e}, \mathbf{f}} \mathbf{v}_{\mathbf{e}}\right)=M_{\mathbf{f}^{\prime}, \mathbf{f}}\left(A_{\varphi, \mathbf{e}, \mathbf{f}}\left(M_{\mathbf{e}, \mathbf{e}^{\prime}} \mathbf{v}_{\mathbf{e}^{\prime}}\right)\right)=\left(M_{\mathbf{f}^{\prime}, \mathbf{f}} A_{\varphi, \mathbf{e}, \mathbf{f}} M_{\mathbf{e}, \mathbf{e}^{\prime}}\right) \mathbf{v}_{\mathbf{e}^{\prime}}
$$

Therefore,

$$
\mathcal{A}_{\varphi, \mathbf{e}^{\prime}, \mathbf{f}^{\prime} / \mathbf{v}_{\mathbf{e}^{\prime}}}=\left(M_{\mathbf{f}^{\prime}, \mathbf{f}} \mathcal{A}_{\varphi, \mathbf{e}, \mathbf{f}} M_{\mathbf{e}, \mathbf{e}^{\prime}}\right) \mathbf{v}_{\mathbf{e}^{\prime}}
$$

for every $\mathbf{v}_{\mathbf{e}^{\prime}}$. From our previous classes we know that knowing $A \mathbf{v}$ for all vectors \mathbf{v} completely determines the matrix A, so

$$
A_{\varphi, \mathbf{e}^{\prime}, \mathbf{f}^{\prime}}=\left(M_{\mathbf{f}^{\prime}, \mathbf{f}} \mathcal{A}_{\varphi, \mathbf{e}, \mathbf{f}} M_{\mathbf{e}, \mathbf{e}^{\prime}}\right)=\left(M_{\mathbf{f}, \mathbf{f}^{\prime}}^{-1} \mathcal{A}_{\varphi, \mathbf{e}, \mathbf{f}} M_{\mathbf{e}, \mathbf{e}^{\prime}}\right)
$$

because of properties of transition matrices proved earlier.
Remark 1. Our formula

$$
A_{\varphi, \mathbf{e}^{\prime}, \mathbf{f}^{\prime}}=M_{\mathbf{f}^{\prime}, \mathbf{f}} A_{\varphi, \mathbf{e}, \mathbf{f}} M_{\mathbf{e}, \mathbf{e}^{\prime}}
$$

shows that changing from the coordinate systems e, \mathbf{f} to some other coordinate system amounts to multiplying the matrix $A_{\varphi, \mathbf{e}, \mathbf{f}}$ by some invertible matrices on the left and on the right, so effectively to performing a certain number of elementary row and column operations on this matrix. This is very useful (but not applicable to a more narrow class of linear transformations, see below).

Remark 2. A linear operator $\varphi: \mathrm{V} \rightarrow \mathrm{V}$ is often called a linear transformation. For a linear transformation, it makes sense to use the same coordinate system for the input and the output. By definition, the matrix of a linear operator $\varphi: V \rightarrow \mathrm{~V}$ relative to the basis e_{1}, \ldots, e_{n} is

$$
\mathcal{A}_{\varphi, \mathbf{e}}:=A_{\varphi, \mathbf{e}, \mathbf{e}}
$$

Lemma 2. For a linear transformation $\varphi: V \rightarrow \mathrm{~V}$, and two bases $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}$ and $\mathrm{e}_{1}^{\prime}, \ldots, \mathrm{e}_{\mathrm{n}}^{\prime}$ of V , we have

$$
A_{\varphi, \mathbf{e}^{\prime}}=M_{\mathbf{e}, \mathbf{e}^{\prime}}^{-1} A_{\varphi, \mathbf{e}} M_{\mathbf{e}, \mathbf{e}^{\prime}}
$$

Proof. This is a particular case of Lemma 1.

Remark 3. Proposition 5 shows that for a square matrix A, the change $A \mapsto C^{-1} A C$ with an invertible matrix C, corresponds to the situation where \mathcal{A} is viewed as a matrix of a linear transformation, and C is viewed as a transition matrix for a coordinate change. You verified in your earlier home assignments that $\operatorname{tr}\left(C^{-1} A C\right)=\operatorname{tr}(A)$ and $\operatorname{det}\left(C^{-1} A C\right)=\operatorname{det}(A)$; these properties imply that the trace and the determinant do not depend on the choice of coordinates, and hence reflect some geometric properties of a linear transformation. (In case of the determinant, those properties have been hinted at in our previous classes: determinants compute how a linear transformation changes volumes of solids).

Examples of linear maps and coordinate changes

Example 1. As we know, every linear $\operatorname{map} \varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is given by a $k \times n$-matrix A, so that $\varphi(x)=A x$.
Example 2. Let V be the vector space of all polynomials in one variable x. Consider the function $\varphi: V \rightarrow \mathrm{~V}$ that maps every polynomial $f(x)$ to $x f(x)$. This is a linear map:

$$
\begin{aligned}
x\left(f_{1}(x)+f_{2}(x)\right) & =x f_{1}(x)+x f_{2}(x) \\
x(\operatorname{cf}(x)) & =c(x f(x)) .
\end{aligned}
$$

Example 3. Let V be the vector space of all polynomials in one variable x. Consider the function $\psi: V \rightarrow V$ that maps every polynomial $f(x)$ to $f^{\prime}(x)$. This is a linear map:

$$
\begin{aligned}
\left(f_{1}(x)+f_{2}(x)\right)^{\prime} & =f_{1}^{\prime}(x)+f_{2}^{\prime}(x) \\
(c f(x))^{\prime} & =c f^{\prime}(x)
\end{aligned}
$$

Example 4. Let V be the vector space of all polynomials in one variable x. Consider the function $\alpha: V \rightarrow V$ that maps every polynomial $f(x)$ to $3 f(x) f^{\prime}(x)$. This is not a linear map; for example, $1 \mapsto 0, x \mapsto 3 x$, but $x+1 \mapsto 3(x+1)=3 x+3 \neq 3 x+0$.

