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Examples of linear maps and coordinate changes

Example 1. Let Pn be the vector space of all polynomials in one variable x of degree at most n. Then
there is a function ϕ : Pn → Pn+1 that maps every polynomial f(x) to xf(x). (Note that the target of ϕ has
to be different, since multiplying by x increases degrees). This function is a linear map, which we can check
in the same way as we did in previous class.

Example 2. Let Pn be the vector space of all polynomials in one variable x of degree at most n. Then
we can define both a function ψ : Pn → Pn−1 that maps every polynomial f(x) to f ′(x), and a function
ψ̂ : Pn → Pn that every polynomial f(x) to f ′(x) (since the degree of the derivative of a polynomial of degree
at most n is at most n − 1). These functions are linear maps, which we can check in the same way as in
previous class. In fact, ψ̂ is a linear transformation, since it is a map from Pn to itself.

Example 3. Consider the vector space M2 of all 2× 2-matrices. Let us define a function α : M2 →M2 by

the formula α(X) =

(
1 1
1 0

)
X. Let us check that this map is a linear transformation. Indeed, by properties

of matrix products

α(X1 + X2) =

(
1 1
1 0

)
(X1 + X2) =

(
1 1
1 0

)
X1 +

(
1 1
1 0

)
X2 = α(X1) + α(X2),

α(cX) =

(
1 1
1 0

)
(cX) = c

(
1 1
1 0

)
X = cα(X).

Example 4. Let us consider the linear map ϕ from Example 1, and assume n = 2. Let us take the bases
e1 = 1, e2 = x, e3 = x

2 of P2, and the basis f1 = 1, f2 = x, f3 = x
2, f4 = x

3 of P3, and compute Aϕ,e,f . Note
that ϕ(e1) = x · 1 = x = f2, ϕ(e2) = x · x = x2 = f3, and ϕ(e3) = x · x2 = x3 = f4. Therefore

Aϕ,e,f =


0 0 0
1 0 0
0 1 0
0 0 1

 .
Example 5. Let us consider the linear maps ψ and ψ̂ from Example 2, and assume n = 3. Let us take
the bases e1 = 1, e2 = x, e3 = x2, e4 = x3 of P3, and the basis f1 = 1, f2 = x, f3 = x2 of P2, and let us
compute Aψ,e,f and Aψ̂,e. Note that ψ(e1) = 1

′ = 0, ψ(e2) = x
′ = 1 = f1, ψ(e3) = (x2) ′ = 2x = 2f2, and

ψ(e4) = (x3) ′ = 3x2 = 3f3, and that ψ̂(e1) = 1
′ = 0, ψ̂(e2) = x

′ = 1 = e1, ψ̂(e3) = (x2) ′ = 2x = 2e2, and
ψ̂(e4) = (x3) ′ = 3x2 = 3e3. Therefore

Aψ,e,f =

0 1 0 0
0 0 2 0
0 0 0 3


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and

Aψ̂,e =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .
Example 6. Let us look at the linear map α from Example 3. We consider the basis of matrix units in M2:
e1 = E11, e2 = E12, e3 = E21, e4 = E22. We have

α(e1) =

(
1 1
1 0

)(
1 0
0 0

)
=

(
1 0
1 0

)
= e1 + e3,

α(e2) =

(
1 1
1 0

)(
0 1
0 0

)
=

(
0 1
0 1

)
e2 + e4,

α(e3) =

(
1 1
1 0

)(
0 0
1 0

)
=

(
1 0
0 0

)
= e1,

α(e4) =

(
1 1
1 0

)(
0 0
0 1

)
=

(
0 1
0 0

)
= e2,

so

Aα,e =


1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

 .
Example 7. Let us take two bases of R2: e1 =

(
1
1

)
, e2 =

(
1
0

)
, and f1 =

(
7
5

)
, f2 =

(
4
3

)
. Suppose that

the matrix of a linear transformation ϕ : R2 → R2 relative to the first basis is

(
4 0
0 3

)
. Let us compute its

matrix relative to the second basis. For that, we first compute the transition matrix Me,f . We have

f1 =

(
7
5

)
= 5e1 + 2e2,

f2 =

(
4
3

)
= 3e1 + e2,

so

Me,f =

(
5 3
2 1

)
,

and

M−1
e,f =

(
−1 3
2 −5

)
.

Therefore

Aϕ,f =M
−1
e,fAϕ,eMe,f =

(
−1 3
2 −5

)(
4 0
0 3

)(
5 3
2 1

)
=

(
−2 −3
10 9

)
.

Computing Fibonacci numbers

Fibonacci numbers are defined recursively: f0 = 0, f1 = 1, fn = fn−1+ fn−2 for n > 2, so that this sequence
starts like this:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

Next time we shall discuss how to derive a formula for these using linear algebra.
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