1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 21

Examples of linear maps and coordinate changes

Example 1. Let P_{n} be the vector space of all polynomials in one variable x of degree at most n. Then there is a function $\varphi: P_{n} \rightarrow P_{n+1}$ that maps every polynomial $f(x)$ to $\chi f(x)$. (Note that the target of φ has to be different, since multiplying by x increases degrees). This function is a linear map, which we can check in the same way as we did in previous class.

Example 2. Let P_{n} be the vector space of all polynomials in one variable x of degree at most n. Then we can define both a function $\psi: P_{n} \rightarrow P_{n-1}$ that maps every polynomial $f(x)$ to $f^{\prime}(x)$, and a function $\hat{\psi}: P_{n} \rightarrow P_{n}$ that every polynomial $f(x)$ to $f^{\prime}(x)$ (since the degree of the derivative of a polynomial of degree at most n is at most $\mathrm{n}-1$). These functions are linear maps, which we can check in the same way as in previous class. In fact, $\hat{\psi}$ is a linear transformation, since it is a map from P_{n} to itself.

Example 3. Consider the vector space M_{2} of all 2×2-matrices. Let us define a function $\alpha: M_{2} \rightarrow M_{2}$ by the formula $\alpha(X)=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right) X$. Let us check that this map is a linear transformation. Indeed, by properties of matrix products

$$
\begin{gathered}
\alpha\left(X_{1}+X_{2}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(X_{1}+X_{2}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) X_{1}+\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) X_{2}=\alpha\left(X_{1}\right)+\alpha\left(X_{2}\right) \\
\alpha(c X)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)(c X)=c\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) X=c \alpha(X)
\end{gathered}
$$

Example 4. Let us consider the linear map φ from Example 1, and assume $n=2$. Let us take the bases $e_{1}=1, e_{2}=x, e_{3}=x^{2}$ of P_{2}, and the basis $f_{1}=1, f_{2}=x, f_{3}=x^{2}, f_{4}=x^{3}$ of P_{3}, and compute $A_{\varphi, e, f}$. Note that $\varphi\left(e_{1}\right)=x \cdot 1=x=f_{2}, \varphi\left(e_{2}\right)=x \cdot x=x^{2}=f_{3}$, and $\varphi\left(e_{3}\right)=x \cdot x^{2}=x^{3}=f_{4}$. Therefore

$$
A_{\varphi, \mathbf{e}, \mathbf{f}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Example 5. Let us consider the linear maps ψ and $\hat{\psi}$ from Example 2, and assume $\mathfrak{n}=3$. Let us take the bases $e_{1}=1, e_{2}=x, e_{3}=x^{2}, e_{4}=x^{3}$ of P_{3}, and the basis $f_{1}=1, f_{2}=x, f_{3}=x^{2}$ of P_{2}, and let us compute $A_{\psi, \mathbf{e}, \mathbf{f}}$ and $A_{\hat{\psi}, \mathbf{e}}$. Note that $\psi\left(e_{1}\right)=1^{\prime}=0, \psi\left(e_{2}\right)=x^{\prime}=1=f_{1}, \psi\left(e_{3}\right)=\left(x^{2}\right)^{\prime}=2 x=2 f_{2}$, and $\psi\left(e_{4}\right)=\left(x^{3}\right)^{\prime}=3 x^{2}=3 f_{3}$, and that $\hat{\psi}\left(e_{1}\right)=1^{\prime}=0, \hat{\psi}\left(e_{2}\right)=x^{\prime}=1=e_{1}, \hat{\psi}\left(e_{3}\right)=\left(x^{2}\right)^{\prime}=2 x=2 e_{2}$, and $\hat{\psi}\left(e_{4}\right)=\left(x^{3}\right)^{\prime}=3 x^{2}=3 e_{3}$. Therefore

$$
A_{\psi, \mathbf{e}, \mathbf{f}}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

and

$$
A_{\hat{\psi}, \mathbf{e}}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Example 6. Let us look at the linear map α from Example 3. We consider the basis of matrix units in M_{2} : $e_{1}=E_{11}, e_{2}=E_{12}, e_{3}=E_{21}, e_{4}=E_{22}$. We have

$$
\begin{gathered}
\alpha\left(e_{1}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)=e_{1}+e_{3} \\
\alpha\left(e_{2}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right) e_{2}+e_{4} \\
\alpha\left(e_{3}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=e_{1} \\
\alpha\left(e_{4}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=e_{2}
\end{gathered}
$$

so

$$
A_{\alpha, \mathbf{e}}=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Example 7. Let us take two bases of $\mathbb{R}^{2}: e_{1}=\binom{1}{1}, e_{2}=\binom{1}{0}$, and $f_{1}=\binom{7}{5}, f_{2}=\binom{4}{3}$. Suppose that the matrix of a linear transformation $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ relative to the first basis is $\left(\begin{array}{ll}4 & 0 \\ 0 & 3\end{array}\right)$. Let us compute its matrix relative to the second basis. For that, we first compute the transition matrix $\mathbf{M}_{\mathbf{e}, \mathbf{f}}$. We have

$$
\begin{aligned}
& f_{1}=\binom{7}{5}=5 e_{1}+2 e_{2} \\
& f_{2}=\binom{4}{3}=3 e_{1}+e_{2}
\end{aligned}
$$

so

$$
M_{e, f}=\left(\begin{array}{ll}
5 & 3 \\
2 & 1
\end{array}\right)
$$

and

$$
M_{\mathbf{e}, \mathbf{f}}^{-1}=\left(\begin{array}{cc}
-1 & 3 \\
2 & -5
\end{array}\right)
$$

Therefore

$$
A_{\varphi, \mathbf{f}}=M_{\mathbf{e}, \mathbf{f}}^{-1} A_{\varphi, \mathbf{e}} M_{\mathbf{e}, \mathbf{f}}=\left(\begin{array}{cc}
-1 & 3 \\
2 & -5
\end{array}\right)\left(\begin{array}{ll}
4 & 0 \\
0 & 3
\end{array}\right)\left(\begin{array}{ll}
5 & 3 \\
2 & 1
\end{array}\right)=\left(\begin{array}{cc}
-2 & -3 \\
10 & 9
\end{array}\right)
$$

Computing Fibonacci numbers

Fibonacci numbers are defined recursively: $f_{0}=0, f_{1}=1, f_{n}=f_{n-1}+f_{n-2}$ for $n \geqslant 2$, so that this sequence starts like this:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

Next time we shall discuss how to derive a formula for these using linear algebra.

