1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 21

Examples of linear maps and coordinate changes

Example 1. Let P_n be the vector space of all polynomials in one variable x of degree at most n. Then there is a function $\varphi: P_n \to P_{n+1}$ that maps every polynomial f(x) to xf(x). (Note that the target of φ has to be different, since multiplying by x increases degrees). This function is a linear map, which we can check in the same way as we did in previous class.

Example 2. Let P_n be the vector space of all polynomials in one variable x of degree at most n. Then we can define both a function $\psi: P_n \to P_{n-1}$ that maps every polynomial f(x) to f'(x), and a function $\hat{\psi}: P_n \to P_n$ that every polynomial f(x) to f'(x) (since the degree of the derivative of a polynomial of degree at most n is at most n-1). These functions are linear maps, which we can check in the same way as in previous class. In fact, $\hat{\psi}$ is a linear transformation, since it is a map from P_n to itself.

Example 3. Consider the vector space M_2 of all 2×2 -matrices. Let us define a function $\alpha: M_2 \to M_2$ by the formula $\alpha(X) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} X$. Let us check that this map is a linear transformation. Indeed, by properties of matrix products

$$\begin{aligned} \alpha(X_1 + X_2) &= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} (X_1 + X_2) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} X_1 + \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} X_2 = \alpha(X_1) + \alpha(X_2), \\ \alpha(cX) &= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} (cX) = c \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} X = c \alpha(X). \end{aligned}$$

Example 4. Let us consider the linear map φ from Example 1, and assume n = 2. Let us take the bases $e_1 = 1, e_2 = x, e_3 = x^2$ of P_2 , and the basis $f_1 = 1, f_2 = x, f_3 = x^2, f_4 = x^3$ of P_3 , and compute $A_{\varphi, \mathbf{e}, \mathbf{f}}$. Note that $\varphi(e_1) = x \cdot 1 = x = f_2$, $\varphi(e_2) = x \cdot x = x^2 = f_3$, and $\varphi(e_3) = x \cdot x^2 = x^3 = f_4$. Therefore

$$A_{\varphi,\mathbf{e},\mathbf{f}} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Example 5. Let us consider the linear maps ψ and $\hat{\psi}$ from Example 2, and assume n = 3. Let us take the bases $e_1 = 1, e_2 = x, e_3 = x^2, e_4 = x^3$ of P_3 , and the basis $f_1 = 1, f_2 = x, f_3 = x^2$ of P_2 , and let us compute $A_{\psi,e,f}$ and $A_{\hat{\psi},e}$. Note that $\psi(e_1) = 1' = 0$, $\psi(e_2) = x' = 1 = f_1$, $\psi(e_3) = (x^2)' = 2x = 2f_2$, and $\psi(e_4) = (x^3)' = 3x^2 = 3f_3$, and that $\hat{\psi}(e_1) = 1' = 0$, $\hat{\psi}(e_2) = x' = 1 = e_1$, $\hat{\psi}(e_3) = (x^2)' = 2x = 2e_2$, and $\hat{\psi}(e_4) = (x^3)' = 3x^2 = 3e_3$. Therefore

$$A_{\psi,\mathbf{e},\mathbf{f}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

and

$$A_{\hat{\psi},\mathbf{e}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Example 6. Let us look at the linear map α from Example 3. We consider the basis of matrix units in M₂: $e_1 = E_{11}, e_2 = E_{12}, e_3 = E_{21}, e_4 = E_{22}$. We have

$$\begin{aligned} \alpha(e_1) &= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = e_1 + e_3, \\ \alpha(e_2) &= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} e_2 + e_4, \\ \alpha(e_3) &= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = e_1, \\ \alpha(e_4) &= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = e_2, \end{aligned}$$

 \mathbf{SO}

$$A_{\alpha,\mathbf{e}} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

Example 7. Let us take two bases of \mathbb{R}^2 : $e_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $e_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, and $f_1 = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$, $f_2 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$. Suppose that the matrix of a linear transformation $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$ relative to the first basis is $\begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix}$. Let us compute its matrix relative to the second basis. For that, we first compute the transition matrix $M_{\mathbf{e},\mathbf{f}}$. We have

$$f_1 = \begin{pmatrix} 7\\5 \end{pmatrix} = 5e_1 + 2e_2,$$

$$f_2 = \begin{pmatrix} 4\\3 \end{pmatrix} = 3e_1 + e_2,$$

 \mathbf{SO}

 $\mathsf{M}_{\mathbf{e},\mathbf{f}} = \begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix},$

and

$$\mathsf{M}_{\mathbf{e},\mathbf{f}}^{-1} = \begin{pmatrix} -1 & 3\\ 2 & -5 \end{pmatrix}.$$

Therefore

$$A_{\varphi,\mathbf{f}} = M_{\mathbf{e},\mathbf{f}}^{-1} A_{\varphi,\mathbf{e}} M_{\mathbf{e},\mathbf{f}} = \begin{pmatrix} -1 & 3\\ 2 & -5 \end{pmatrix} \begin{pmatrix} 4 & 0\\ 0 & 3 \end{pmatrix} \begin{pmatrix} 5 & 3\\ 2 & 1 \end{pmatrix} = \begin{pmatrix} -2 & -3\\ 10 & 9 \end{pmatrix}.$$

Computing Fibonacci numbers

Fibonacci numbers are defined recursively: $f_0 = 0$, $f_1 = 1$, $f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$, so that this sequence starts like this:

Next time we shall discuss how to derive a formula for these using linear algebra.