1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 22

Computing Fibonacci numbers

Fibonacci numbers are defined recursively: $f_{0}=0, f_{1}=1, f_{n}=f_{n-1}+f_{n-2}$ for $n \geqslant 2$, so that this sequence starts like this:

$$
0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

I shall now explain how to derive a formula for these using linear algebra.
Idea 1: let us consider a much simpler question: let $g_{0}=1$, and $g_{n}=\operatorname{cg}_{n-1}$ for $n \geqslant 1$. Then of course $g_{n}=c^{n}$.

In our case, each of the numbers is determined by two previous ones, let us store pairs! We put $v_{n}=\binom{f_{n}}{f_{n+1}}$.

Then

$$
v_{n+1}=\binom{f_{n}}{f_{n+1}}=\binom{f_{n}}{f_{n}+f_{n-1}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\binom{f_{n-1}}{f_{n}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) v_{n}
$$

therefore

$$
v_{n+1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) v_{n}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) v_{n-1}=\cdots=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n} v_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n+1} v_{0}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n+1}\binom{0}{1} .
$$

Therefore, we shall be able to compute Fibonacci numbers if we can compute the n-th power of the matrix $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$.

Idea 2: If our matrix were a diagonal matrix $\left(\begin{array}{cc}b_{1} & 0 \\ 0 & b_{2}\end{array}\right)$, its n-th power would have been $\left(\begin{array}{cc}b_{1}^{n} & 0 \\ 0 & b_{2}^{n}\end{array}\right)$. But our matrix is not like that. What shall we do? That's where linear algebra is particularly beneficial: we shall view this matrix as a matrix of a linear transformation, and change coordinates: find another system of coordinates where the matrix representing this transformation is $\left(\begin{array}{cc}b_{1} & 0 \\ 0 & b_{2}\end{array}\right)$ for some b_{1} and b_{2}.

What does it mean for a matrix of a linear operator φ to be diagonal in the system of coordinates given by the basis e_{1}, e_{2} ? This means $\varphi\left(e_{1}\right)=b_{1} e_{1}, \varphi\left(e_{2}\right)=b_{2} e_{2}$.
Definition 1. For a linear transformation $\varphi: \mathrm{V} \rightarrow \mathrm{V}$, a nonzero vector v satisfying $\varphi(v)=c \cdot v$ for some scalar c is called an eigenvector of φ. The number c is called an eigenvalue of φ.

Lemma 1. Let φ be a linear transformation, and let A be the matrix of φ relative to some basis e_{1}, \ldots, e_{n}. A number c is an eigenvalue of φ if and only if $\operatorname{det}\left(\mathrm{A}-\mathrm{cI}_{\mathrm{n}}\right)=0$.
Proof. Suppose that c is an eigenvalue, which happens if and only if there exists a nonzero vector v such that $\varphi(v)=c \cdot v$. In coordinates relative to the appropriate basis, $\mathcal{A} \cdot v_{e}=c \cdot v_{e}$, or, in other words, $\left(A-c I_{n}\right) \cdot v_{e}=0$. Therefore, c is an eigenvalue if and only if the system of equations $\left(A-c I_{n}\right) \cdot x=0$ has a nontrivial solution, which happens if and only if the matrix $A-\mathrm{cI}_{n}$ is not invertible, which happens if and only if $\operatorname{det}\left(A-c I_{n}\right)=0$.

As you saw in the tutorial sheet a couple of hours ago, in the case of 2×2-matrices, this means that the eigenvalues are roots of the equation $t^{2}-\operatorname{tr}(A) t+\operatorname{det}(A)=0$. In our case, this means that $t^{2}-t-1=0$, so the eigenvalues are $\frac{1 \pm \sqrt{5}}{2}$.

The corresponding eigenvectors are obtained from solutions of the systems of equations $A x=\frac{1 \pm \sqrt{5}}{2} x$. The first of them has the general solution $\binom{x_{1}}{\frac{1+\sqrt{5}}{2} \chi_{1}}$, and the second one has the general solution $\binom{x_{1}}{\frac{1-\sqrt{5}}{2} \chi_{1}}$. Setting in each cases $x_{1}=1$, we obtain two eigenvectors $\mathbf{e}_{1}=\binom{1}{\frac{1+\sqrt{5}}{2}}$ and $\mathbf{e}_{2}=\binom{1}{\frac{1-\sqrt{5}}{2}}$. The transition matrix from the basis of standard unit vectors $\mathbf{s}_{1}, \mathbf{s}_{2}$ to this basis is, manifestly, $M_{\mathbf{s}, \mathbf{e}}=\left(\begin{array}{cc}1 & 1 \\ \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2}\end{array}\right)$, so

$$
M_{\mathrm{s}, \mathrm{e}}^{-1}=-\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
\frac{1-\sqrt{5}}{2} & -1 \\
\frac{-1-\sqrt{5}}{2} & 1
\end{array}\right)
$$

Since $A \mathbf{e}_{1}=\left(\frac{1+\sqrt{5}}{2}\right) \mathbf{e}_{1}$, and $A \mathbf{e}_{2}=\left(\frac{1-\sqrt{5}}{2}\right) \mathbf{e}_{2}$, the matrix of the linear transformation φ relative to the basis $\mathbf{e}_{1}, \mathbf{e}_{2}$ is

$$
M_{\mathrm{s}, \mathrm{e}}^{-1} A M_{\mathrm{s}, \mathrm{e}}=\left(\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & 0 \\
0 & \frac{1-\sqrt{5}}{2}
\end{array}\right)
$$

Therefore,

$$
A=M_{\mathbf{s}, \mathrm{e}}\left(\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & 0 \\
0 & \frac{1-\sqrt{5}}{2}
\end{array}\right) M_{\mathrm{s}, \mathrm{e}}^{-1}
$$

and hence
$A^{n}=\left(M_{s, e}\left(\begin{array}{cc}\frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2}\end{array}\right) M_{\mathbf{s}, \mathrm{e}}^{-1}\right)^{n}=M_{\mathbf{s}, \mathrm{e}}\left(\begin{array}{cc}\frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2}\end{array}\right)^{n} M_{\mathrm{s}, \mathrm{e}}^{-1}=M_{\mathrm{s}, \mathrm{e}}\left(\begin{array}{cc}\left(\frac{1+\sqrt{5}}{2}\right)^{n} & 0 \\ 0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n}\end{array}\right) M_{\mathrm{s}, \mathrm{e}}^{-1}$.
Substituting the above formulas for $M_{\mathbf{s}, \mathbf{e}}$ and $M_{\mathbf{s}, \mathbf{e}}^{-1}$, we see that

$$
A^{n}=\left(\begin{array}{cc}
1 & 1 \\
\frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2}
\end{array}\right)\left(\begin{array}{cc}
\left(\frac{1+\sqrt{5}}{2}\right)^{n} & 0 \\
0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n}
\end{array}\right)-\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
\frac{1-\sqrt{5}}{2} & -1 \\
\frac{-1-\sqrt{5}}{2} & 1
\end{array}\right)
$$

In fact, we have $\mathbf{v}_{\mathrm{n}}=A^{n} \mathbf{v}_{0}$, so

$$
\left.\begin{array}{rl}
\mathbf{v}_{\mathrm{n}}= & \left(\begin{array}{cc}
1 & 1 \\
\frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2}
\end{array}\right)\left(\begin{array}{cc}
\left(\frac{1+\sqrt{5}}{2}\right)^{n} & 0 \\
0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n}
\end{array}\right)\left(-\frac{1}{\sqrt{5}}\right)\left(\begin{array}{cc}
\frac{1-\sqrt{5}}{2} & -1 \\
\frac{-1-\sqrt{5}}{2} & 1
\end{array}\right)\binom{0}{1}= \\
= & \left(\begin{array}{cc}
1 & 1 \\
\frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2}
\end{array}\right)\left(\begin{array}{cc}
\left(\frac{1+\sqrt{5}}{2}\right)^{n} & 0 \\
0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n}
\end{array}\right)\binom{\frac{1}{\sqrt{5}}}{-\frac{1}{\sqrt{5}}}=\left(\begin{array}{cc}
1 & 1 \\
\frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2}
\end{array}\right)\binom{\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}}{-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}}= \\
& =\binom{\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)}{\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right.}
\end{array}\right) .
$$

Recalling that $\mathbf{v}_{n}=\binom{f_{n}}{f_{n+1}}$, we observe that

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

