1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 22

Computing Fibonacci numbers

Fibonacci numbers are defined recursively: $f_0 = 0$, $f_1 = 1$, $f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$, so that this sequence starts like this:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

I shall now explain how to derive a formula for these using linear algebra.

Idea 1: let us consider a much simpler question: let $g_0 = 1$, and $g_n = cg_{n-1}$ for $n \ge 1$. Then of course $g_n = c^n$.

In our case, each of the numbers is determined by two previous ones, let us store pairs! We put $\nu_n = \begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix}.$

$$\mathbf{v}_{n+1} = \begin{pmatrix} \mathbf{f}_n \\ \mathbf{f}_{n+1} \end{pmatrix} = \begin{pmatrix} \mathbf{f}_n \\ \mathbf{f}_n + \mathbf{f}_{n-1} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{f}_{n-1} \\ \mathbf{f}_n \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{pmatrix} \mathbf{v}_n,$$

therefore

$$\nu_{n+1} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \nu_n = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \nu_{n-1} = \dots = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \nu_1 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{n+1} \nu_0 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^{n+1} \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Therefore, we shall be able to compute Fibonacci numbers if we can compute the n-th power of the matrix $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$

Idea 2: If our matrix were a diagonal matrix $\begin{pmatrix} b_1 & 0 \\ 0 & b_2 \end{pmatrix}$, its n-th power would have been $\begin{pmatrix} b_1^n & 0 \\ 0 & b_2^n \end{pmatrix}$. But our matrix is not like that. What shall we do? That's where linear algebra is particularly beneficial: we shall view this matrix as a matrix of a linear transformation, and change coordinates: find another system of coordinates where the matrix representing this transformation is $\begin{pmatrix} b_1 & 0\\ 0 & b_2 \end{pmatrix}$ for some b_1 and b_2 .

What does it mean for a matrix of a linear operator φ to be diagonal in the system of coordinates given by the basis e_1, e_2 ? This means $\varphi(e_1) = b_1 e_1, \varphi(e_2) = b_2 e_2$.

Definition 1. For a linear transformation $\varphi: V \to V$, a nonzero vector ν satisfying $\varphi(\nu) = c \cdot \nu$ for some scalar c is called an *eigenvector* of φ . The number c is called an *eigenvalue* of φ .

Lemma 1. Let φ be a linear transformation, and let A be the matrix of φ relative to some basis e_1, \ldots, e_n . A number **c** is an eigenvalue of φ if and only if det(A - cI_n) = 0.

Proof. Suppose that \mathbf{c} is an eigenvalue, which happens if and only if there exists a nonzero vector \mathbf{v} such that $\varphi(v) = c \cdot v$. In coordinates relative to the appropriate basis, $A \cdot v_e = c \cdot v_e$, or, in other words, $(A - cI_n) \cdot v_e = 0$. Therefore, c is an eigenvalue if and only if the system of equations $(A - cI_n) \cdot x = 0$ has a nontrivial solution, which happens if and only if the matrix $A - cI_n$ is not invertible, which happens if and only if $\det(A - cI_n) = 0$. As you saw in the tutorial sheet a couple of hours ago, in the case of 2×2 -matrices, this means that the eigenvalues are roots of the equation $t^2 - tr(A)t + \det(A) = 0$. In our case, this means that $t^2 - t - 1 = 0$, so the eigenvalues are $\frac{1\pm\sqrt{5}}{2}$.

The corresponding eigenvectors are obtained from solutions of the systems of equations $Ax = \frac{1\pm\sqrt{5}}{2}x$. The first of them has the general solution $\begin{pmatrix} x_1 \\ \frac{1+\sqrt{5}}{2}x_1 \end{pmatrix}$, and the second one has the general solution $\begin{pmatrix} x_1 \\ \frac{1-\sqrt{5}}{2}x_1 \end{pmatrix}$. Setting in each cases $x_1 = 1$, we obtain two eigenvectors $\mathbf{e}_1 = \begin{pmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{pmatrix}$ and $\mathbf{e}_2 = \begin{pmatrix} 1 \\ \frac{1-\sqrt{5}}{2} \end{pmatrix}$. The transition matrix from the basis of standard unit vectors \mathbf{s}_1 , \mathbf{s}_2 to this basis is, manifestly, $M_{\mathbf{s},\mathbf{e}} = \begin{pmatrix} 1 \\ \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \end{pmatrix}$, so

$$M_{\mathbf{s},\mathbf{e}}^{-1} = -\frac{1}{\sqrt{5}} \begin{pmatrix} \frac{1-\sqrt{5}}{2} & -1\\ \frac{-1-\sqrt{5}}{2} & 1 \end{pmatrix},$$

Since $Ae_1 = (\frac{1+\sqrt{5}}{2})e_1$, and $Ae_2 = (\frac{1-\sqrt{5}}{2})e_2$, the matrix of the linear transformation φ relative to the basis e_1 , e_2 is

$$\mathbf{M}_{\mathbf{s},\mathbf{e}}^{-1}\mathbf{A}\mathbf{M}_{\mathbf{s},\mathbf{e}} = \begin{pmatrix} \frac{1+\sqrt{5}}{2} & \mathbf{0} \\ \mathbf{0} & \frac{1-\sqrt{5}}{2} \end{pmatrix}$$

Therefore,

$$A = M_{\mathbf{s},\mathbf{e}} \begin{pmatrix} \frac{1+\sqrt{5}}{2} & 0\\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix} M_{\mathbf{s},\mathbf{e}}^{-1},$$

and hence

$$A^{n} = \left(M_{s,e} \begin{pmatrix} \frac{1+\sqrt{5}}{2} & 0\\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix} M_{s,e}^{-1} \right)^{n} = M_{s,e} \begin{pmatrix} \frac{1+\sqrt{5}}{2} & 0\\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix}^{n} M_{s,e}^{-1} = M_{s,e} \begin{pmatrix} \begin{pmatrix} \frac{1+\sqrt{5}}{2} \end{pmatrix}^{n} & 0\\ 0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n} \end{pmatrix} M_{s,e}^{-1}$$

Substituting the above formulas for $M_{s,e}$ and $M_{s,e}^{-1}$, we see that

$$A^{n} = \begin{pmatrix} 1 & 1\\ \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \end{pmatrix} \begin{pmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^{n} & 0\\ 0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n} \end{pmatrix} - \frac{1}{\sqrt{5}} \begin{pmatrix} \frac{1-\sqrt{5}}{2} & -1\\ \frac{-1-\sqrt{5}}{2} & 1 \end{pmatrix}$$

In fact, we have $\mathbf{v}_n = A^n \mathbf{v}_0$, so

$$\begin{split} \mathbf{v}_{n} &= \begin{pmatrix} 1 & 1 \\ \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \end{pmatrix} \begin{pmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^{n} & 0 \\ 0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n} \end{pmatrix} \begin{pmatrix} -\frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \frac{1-\sqrt{5}}{2} & -1 \\ \frac{-1-\sqrt{5}}{2} & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \\ &= \begin{pmatrix} 1 & 1 \\ \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \end{pmatrix} \begin{pmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^{n} & 0 \\ 0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{5}} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} \frac{1+\sqrt{5}}{2} \end{pmatrix}^{n} \\ -\frac{1}{\sqrt{5}} \begin{pmatrix} \frac{1-\sqrt{5}}{2} \end{pmatrix}^{n} \end{pmatrix} = \\ &= \begin{pmatrix} \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2}\right)^{n} - \left(\frac{1-\sqrt{5}}{2}\right)^{n} \right) \\ \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n+1} \right) \end{pmatrix} \end{split}$$

Recalling that $\mathbf{v}_n = \begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix}$, we observe that

$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right).$$