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Reminder: from equations to matrices

Last time we explained how to associate matrix to a system of linear
equations. For example, if we consider the system of equations

x1 + 2x2 + x3 + x4 + x5 = 1,

−3x1 − 6x2 − 2x3 − x5 = −3,

2x1 + 4x2 + 2x3 + x4 + 3x5 = −3,

then the corresponding matrix is

A =

 1 2 1 1 1 1
−3 −6 −2 0 −1 −3
2 4 2 1 3 −3


(note the zero entry that indicates that x4 is not present in the second

equation).
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Reminder: elementary row operations
We also defined elementary row operations on matrices to be the following
moves that transform a matrix into another matrix with the same number
of rows and columns:

Swapping rows: literally swap the row i and the row j for some i 6= j ,
keep all other rows (except for these two) intact.

Re-scaling rows: multiply all entries in the row i by a nonzero number
c , keep all other rows (except for the row i) intact.

Combining rows: for some i 6= j , add to the row i the row j multiplied
by some number c , keep all other rows (except for the row i) intact.

Let us remark that elementary row operations are clearly reversible: if the
matrix B is obtained from the matrix A by elementary row operations,
then the matrix A can be recovered back. Indeed, each individial row
operation is manifestly reversible.

From the equations viewpoint, elementary row operations are simplest
transformations that do not change the set of solutions, so we may hope
to use them to simplify the system enough to be easily solved.
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Gauss–Jordan elimination

Gauss–Jordan elimination is a certain pre-processing of a matrix by means
of elementary row operations.

Step 1: Find the smallest k for which Aik 6= 0 for at least one i , that
is, the smallest k for which the kth column of the matrix A has a
nonzero entry (this means xk actually appears in at least one
equation). Pick one such i , swap the first row of A with the i th one,
and pass the new matrix A to Step 2.

Step 2: If m = 1, terminate. Otherwise, take the smallest number k
for which A1k 6= 0. For each j = 2, . . . ,m, subtract from the j th row

of A the first row multiplied by
Ajk

A1k
. Divide the first row by A1k .

Finally, temporarily set aside the first row, and pass the matrix
consisting of the last m − 1 rows as the new matrix A to Step 1.
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Gauss–Jordan elimination

Once the procedure that we just described terminates, let us assemble
together all the rows set aside along the way. The matrix A thus formed
satisfies the following properties:

For each row of A, either all entries of the row are equal to zero, or
the first non-zero entry is equal to 1. (In this case we shall call that
entry the pivot of that row).

For each pivot of A, all entries in the same column below that pivot
are equal to zero.

A matrix satisfying these two conditions is said to be in row echelon form.
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Gauss–Jordan elimination

To complete pre-processing, for each row s of A that has nonzero entries,
we do the following: for each r < s, subtract from the row r the row s
multiplied by Art , where t is the position of the pivot in the row s.
As a result, the matrix A obtained after this is done satisfies the following
properties:

For each row of A, either all entries of the row are equal to zero, or
the first non-zero entry is equal to 1. (In this case we shall call that
entry the pivot of that row).

For each pivot of A, all other entries in the same column are equal to
zero.

A matrix satisfying these two conditions is said to be in reduced row
echelon form. We proved an important theoretical result: every matrix can
be transformed into a matrix in reduced row echelon form using
elementary row operations.
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Gauss–Jordan elimination: an example
Back to our example, we take the matrix we obtained and start
transforming (writing down row operations to make it easy to check
afterwards): 1 2 1 1 1 1
−3 −6 −2 0 −1 −3
2 4 2 1 3 −3

 (2)+3(1),(3)−2(1)7→

1 2 1 1 1 1
0 0 1 3 2 0
0 0 0 −1 1 −5

 (1)+(3),(2)+3(3),−1×(3)7→

1 2 1 0 2 −4
0 0 1 0 5 −15
0 0 0 1 −1 5

 (1)−(2)7→

1 2 0 0 −3 11
0 0 1 0 5 −15
0 0 0 1 −1 5
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Gauss–Jordan elimination

Now we can use our results to solve systems of linear equations. We
restore the unknowns, and look at the resulting system of equations. This
system can be investigated as follows.

If the last non-zero equation reads 0 = 1, the system is clearly
inconsistent.

If the pivot of last non-zero equation is a coefficient of some unknown, the
system is consistent, and all solutions are easy to describe. For that, we
shall separate unknowns into two groups, the principal (pivotal) unknowns,
that is unknowns for which the coefficient in one of the equations is the
pivot of that equation, and all the other ones, that we call free unknowns.

Once we assign arbitrary numeric values to free unknowns, each of the
equations gives us the unique value of its pivotal unknown which makes
the system consistent. Thus, we described the solution set in a parametric
form using free unknowns as parameters.
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Gauss–Jordan elimination: an example
Continuing with our example, the matrix

A =

1 2 0 0 −3 11
0 0 1 0 5 −15
0 0 0 1 −1 5


is in reduced row echelon form. The corresponding system of equations is

x1 + 2x2 − 3x5 = 11,

x3 + 5x5 = −15,

x4 − x5 = 5.

The pivotal unknowns are x1, x3, and x4, and the free unknowns are x2
and x5. Assigning arbitrary parameters x2 := t2 and x5 := t5 to the free
unknowns, we obtain the following description of the solution set:

x1 = 11− 2t2 + 3t5, x2 = t2, x3 = −15− 5t5, x4 = 5 + t5, x5 = t5.

where t2 and t5 are arbitrary numbers.
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Concluding remarks

In practice, we don’t have to do first the row echelon form, then the
reduced row echelon form: we can use the “almost pivotal” entry (the first
non-zero entry of the row being processed) to cancel all other entries in its
column, thus obtaining the reduced row echelon form right away.

The reduced row echelon form, unlike the row echelon form, is unique,
that is does not depend on the type of row operations performed (there is
freedom in which rows we swap etc.). We shall not prove it in this course.

For the intersection of two 2D planes in 3D, if the planes are not parallel,
the reduced row echelon form will have one free variable, which can be
taken as a parameter of the intersection line. More generally, one linear
equation in n unknowns defines an (n − 1)-dimensional plane, and we just
proved that the intersection of several planes can be parametrised in a
similar way (by free unknowns).
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Next time

First of all, remember that tomorrow there will be a tutorial class at 11am
but no class at 2pm.

Next week, we shall define an important operation on matrices, the matrix
product, and use it to re-package Gauss–Jordan elimination in a different
way, more useful for its theoretical applications.
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