
1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Michaelmas Term 2014

Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Michaelmas Term 2014 1 / 12



Two possibly useful remarks

I was made aware of a rather good (for some parts of the course, at least)
linear algebra textbook, “Linear Algebra” by Jim Hefferon. The best thing
is that it is available online for free:

http://joshua.smcvt.edu/linearalgebra/

It is also important that this book has many examples and exercises. I am
fully aware that sometimes the amount of examples we do in class / in
homeworks is not enough, so this book is a great source of exercises, and
these exercises have answers online too. All in all, a wonderful practice kit.

As it happens every year, School of Maths is running “maths helprooms”
for those of you who want to ask something about the things that are
confusing in some of the modules. It takes place in the “old seminar room”
of School of Maths (room 2.6) every day 1-2pm, and also 12-1pm on
Tuesdays and Thursdays. Bring whatever concerns you have, and sophister
students there will do their best to explain things in a down to earth way.
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Previously on. . .

Last week, you learned about reduced row echelon forms, and got some
experience of using elementary row operations to bring matrices to their
reduced row echelon forms.

Roughly speaking, that teaches us that the solution set of a system of
linear equations, when not empty, can be parametrised: you can pick some
unknowns as arbitrary parameters, and then all others can be uniquely
determined. Reduced row echelon forms teach us precisely which to
choose, and how to determine others.

But. . . wait! If we have one equation with one unknown, ax = b, then we
can just right x = b/a, solving everything in one go. Maybe we can do
something similar for many unknowns? It turns out that there is a way to
re-package our approach into something similar; this is our goal for this
week.
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Matrix arithmetic
Let us create an algebraic set-up for all that. Protagonists: vectors
(columns of coordinates) and matrices (rectangular arrays of coordinates).
Of course, a vector is a particular case of a matrix (with only one column).

We know that the two most basic operators on vectors are addition and
re-scaling. The same works for matrices, component-wise. Of course, to
add two matrices, they must have the same dimensions:

A11 A12 · · · A1n

A21 A22 · · · A2n
... . . .

. . . . . .
Am1 Am2 · · · Amn

+


B11 B12 · · · B1n

B21 B22 · · · B2n
... . . .

. . . . . .
Bm1 Bm2 · · · Bmn

 =

=


A11 + B11 A12 + B12 · · · A1n + B1n

A21 + B21 A22 + B22 · · · A2n + B2n
... . . .

. . . . . .
Am1 + Bm1 Am2 + Bm2 · · · Amn + Bmn
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Matrix arithmetic
Next, we define products of matrices and vectors. For that, we once again
examine a system of m simultaneous linear equations with n unknowns

A1,1x1 + A1,2x2 + · · ·+ A1,nxn = B1,

A2,1x1 + A2,2x2 + · · ·+ A2,nxn = B2,

. . .

Am,1x1 + Am,2x2 + · · ·+ Am,nxn = Bm.

We introduce new notation for it, A · x = b (or even Ax = b), where

A =


A11 A12 · · · A1n

A21 A22 · · · A2n
... . . .

. . . . . .
Am1 Am2 · · · Amn

 , x =


x1
x2
...
xn

 , b =


B1

B2
...

Bm

 .

Note that this new notation is a bit different from the one last week,
where A denoted the matrix including b as the last column.
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Matrix arithmetic

In other words, for an m × n-matrix A, and a column x of height n, we
define the column b = A · x as the column of height m whose k-th entry is
Bk = Ak1x1 + · · ·+ Aknxn:

A11 A12 · · · A1n

A21 A22 · · · A2n
... . . .

. . . . . .
Am1 Am2 · · · Amn

 ·

x1
x2
...
xn

 =


A11x1 + · · ·+ A1nxn
A21x1 + · · ·+ A2nxn

...
Am1x1 + · · ·+ Amnxn


A useful mnemonic rule is that the entries of A · x are “dot products” of

rows of A with the column x.
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Properties of A · b

The products we just defined satisfy the following properties:

A · (x1 + x2) = A · x1 + A · x2,
(A1 + A2) · x = A1 · x + A2 · x,

c · (A · x) = (c · A) · x = A · (c · x).

Here A, A1, and A2 are m × n-matrices, x, x1, and x2 are columns of
height n (vectors), and c is a scalar.

Now we have all the ingredients to define products of matrices in the most
general context. There will be three equivalent definitions, each useful for
some purposes.
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Matrix product

One definition is immediately built upon what we just defined before. Let
A be an m × n-matrix, and B an n × k-matrix. Their product A · B, or
AB, is defined as follows: it is the m × k-matrix C whose columns are
obtained by computing the products of A with columns of B:

A · (b1 | b2 | . . . | bk) = (A · b1 | A · b2 | . . . | A · bk)

Another definition states that the product of an m × n-matrix A and an
n × k-matrix B is the m × k-matrix C with entries

Cij = Ai1B1j + Ai2B2j + · · ·+ AinBnj

(here i runs from 1 to m, and j runs from 1 to k). In other words, Cij is
the “dot product” of the i-th row of A and the j-th column of B.
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Examples

Let us take U =

(
0 1
0 0

)
, V =

(
0 0
1 0

)
, W =

(
2 3 1
5 2 0

)
.

Note that the products U · U, U · V , V · U, V · V , U ·W , and V ·W are
defined, while the products W · U, W · V , and W ·W are not defined.

We have U · U =

(
0 0
0 0

)
, U · V =

(
1 0
0 0

)
, V · U =

(
0 0
0 1

)
,

V · V =

(
0 0
0 0

)
, U ·W =

(
5 2 0
0 0 0

)
, V ·W =

(
0 0 0
2 3 1

)
.

In particular, even though both matrices U · V and V · U are both defined,
they are not equal.
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Matrix product: third definition

However, these two definitions appear a bit ad hoc, without no good
reason to them. The third definition, maybe a bit more indirect, in fact
sheds light on why the matrix product is defined in exactly this way.

Let us view, for a given m × n-matrix A, the product A · x as a rule that
takes a vector x with n coordinates, and computes out of it another vector
with m coordinates, which is denoted by A · x. Then, given two matrices,
an m × n-matrix A and an n × k-matrix B, from a given vector x with k
coordinates, we can first use the matrix B to compute the vector B · x
with n coordinates, and then use the matrix A to compute the vector
A · (B · x) with m coordinates.

By definition, the product of the matrices A and B is the matrix C
satisfying

C · x = A · (B · x) .
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Equivalence of the definitions

The first and the second definition are obviously equivalent: the entry in
the i-th row and the j-th column of the matrix

(A · b1 | A · b2 | . . . | A · bk)

is manifestly equal to Ai1B1j + Ai2B2j + · · ·+ AinBnj . (Note that


B1j

B2j
...

Bnj


is precisely bj , the j-th column of B).
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Equivalence of the definitions

For the third definition, note that the property C · x = A · (B · x) must
hold for all x, in particular for x = ej , the standard unit vector which has
the j-th coordinate equal to 1, and all other coordinates equal to zero.

Note that for each matrix M the vector M · ej (if defined) is equal to the
j-th column of M. In particular, A · (B · ej) = A · bj . Therefore, we must
use as C the matrix A · B from the first definition (whose columns are the
vectors A · bj): only in this case C · ej = A · bj = A · (B · ej) for all j . To
show that C · x = A · (B · x) for all vectors x, we note that such a vector
can be represented as x1e1 + · · ·+ xkek , and then we can use properties of
products of matrices and vectors:

A · (B · x) = A · (B · (x1e1 + · · ·+ xkek)) =

= A · (x1(B · e1) + · · ·+ xk(B · ek)) = x1A · (B · e1) + · · ·+ xkA · (B · ek) =

= x1C · e1 + · · ·+ xkC · ek = C · (x1e1 + · · ·+ xkek) = C · x.
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