# 1111: Linear Algebra I 

Dr. Vladimir Dotsenko (Vlad)

Lecture 6

## Previously on...

Last time, we defined matrix product in three different ways, and discussed why these definitions are equivalent.

$$
\left[\begin{array}{lll}
1 & 0 & -2 \\
0 & 3 & -1
\end{array}\right]\left[\begin{array}{rr}
0 & 3 \\
-2 & -1 \\
0 & 4
\end{array}\right]
$$

(courtesy of http://www.purplemath.com)

## Properties of the matrix product

Let us show that the matrix product we defined satisfies the following properties (whenever all matrix operations below make sense):

$$
\begin{gathered}
A \cdot(B+C)=A \cdot B+A \cdot C, \\
(A+B) \cdot C=A \cdot C+B \cdot C \\
(c \cdot A) \cdot B=c \cdot(A \cdot B)=A \cdot(c \cdot B), \\
(A \cdot B) \cdot C=A \cdot(B \cdot C)
\end{gathered}
$$

All these proofs can proceed in the same way: pick a "test vector" $\mathbf{x}$, multiply both the right and the left by it, and check that they agree. (Since we can take $\mathbf{x}=\mathbf{e}_{j}$ to single out individual columns, this is sufficient to prove equality).
For example, the first equality follows from

$$
\begin{aligned}
& (A \cdot(B+C)) \cdot \mathbf{x}=A \cdot((B+C) \cdot \mathbf{x})=A \cdot(B \cdot \mathbf{x}+C \cdot \mathbf{x})= \\
& A \cdot(B \cdot \mathbf{x})+A \cdot(C \cdot \mathbf{x})=(A \cdot B) \cdot \mathbf{x}+(A \cdot C) \cdot \mathbf{x}=(A \cdot B+A \cdot C) \cdot \mathbf{x}
\end{aligned}
$$

## The identity matrix

Let us also define, for each $n$, the identity matrix $I_{n}$, which is an $n \times n$-matrix whose diagonal elements are equal to 1 , and all other elements are equal to zero.

For each $m \times n$-matrix $A$, we have $I_{m} \cdot A=A \cdot I_{n}=A$. This is true because for each vector $\mathbf{x}$ of height $p$, we have $I_{p} \cdot \mathbf{x}=\mathbf{x}$. (The matrix $I_{p}$ does not change vectors; that is why it is called the identity matrix). Therefore,

$$
\begin{aligned}
& \left(I_{m} \cdot A\right) \cdot \mathbf{x}=I_{m} \cdot(A \cdot \mathbf{x})=A \cdot \mathbf{x} \\
& \left(A \cdot I_{n}\right) \cdot \mathbf{x}=A \cdot\left(I_{n} \cdot \mathbf{x}\right)=A \cdot \mathbf{x}
\end{aligned}
$$

## Elementary matrices

Next, we define elementary matrices. By definition, an elementary matrix is an $n \times n$-matrix obtained from the identity matrix $I_{n}$ by one elementary row operation.
Recall that there were elementary operations of three types: swapping rows, re-scaling rows, and combining rows. This leads to elementary matrices $S_{i j}$, obtained from $I_{n}$ by swapping rows $i$ and $j, R_{i}(c)$, obtained from $I_{n}$ by multiplying the row $i$ by $c$, and $E_{i j}(c)$, obtained from the identity matrix by adding to the row $i$ the row $j$ multiplied by $c$.
Exercise. Write these matrices explicitly.

## Main property of elementary matrices

Our definition of elementary matrices may appear artificial, but we shall now see that it agrees wonderfully with the definition of the matrix product.
Theorem. Let $E$ be an elementary matrix obtained from $I_{n}$ by a certain elementary row operation $\mathcal{E}$, and let $A$ be some $n \times k$-matrix. Then the result of the row operation $\mathcal{E}$ applied to $A$ is equal to $E \cdot A$.

Proof. By inspection, or by noticing that elementary row operations combine rows, and the matrix product $I_{n} \cdot A=A$ computes dot products of rows with columns, so an operation on rows of the first factor results in the same operation on rows of the product.

## Invertible matrices

An $m \times n$-matrix $A$ is said to be invertible, if there exists an $n \times m$-matrix $B$ such that $A \cdot B=I_{m}$ and $B \cdot A=I_{n}$.
Why are invertible matrices useful? If a matrix is invertible, it is very easy to solve $A \cdot \mathbf{x}=\mathbf{b}$ ! Indeed,

$$
B \cdot \mathbf{b}=B \cdot A \cdot \mathbf{x}=I_{n} \cdot \mathbf{x}=\mathbf{x}
$$

Some important properties:

- The equalities $A \cdot B=I_{m}$ and $B \cdot A=I_{n}$ can hold for at most one matrix $B$; indeed, if it holds for two matrices $B_{1}$ and $B_{2}$, we have

$$
B_{1}=B_{1} \cdot I_{m}=B_{1} \cdot\left(A \cdot B_{2}\right)=\left(B_{1} \cdot A\right) \cdot B_{2}=I_{n} \cdot B_{2}=B_{2} .
$$

Thus the matrix $B$ can be called the inverse of $A$ and be denoted $A^{-1}$.

- If both matrices $A_{1}$ and $A_{2}$ are invertible, and their product is defined, then $A_{1} A_{2}$ is invertible, and $\left(A_{1} A_{2}\right)^{-1}=A_{2}^{-1} A_{1}^{-1}$; indeed, for example

$$
\left(A_{1} A_{2}\right) A_{2}^{-1} A_{1}^{-1}=A_{1}\left(A_{2} A_{2}^{-1}\right) A_{1}^{-1}=A_{1} I_{m_{2}} A_{1}^{-1}=A_{1} A_{1}^{-1}=I_{m_{1}}
$$

## Invertible matrices

Theorem. 1. An elementary matrix is invertible.
2. If an $n \times m$-matrix $A$ is invertible, then $m=n$.
3. An $n \times n$-matrix $A$ is invertible if and only if it can be represented as a product of elementary matrices.
Proof. 1. If $A=E$ is an elementary matrix, then for $B$ we can take the matrix corresponding to the inverse row operation. Then $A B=I_{n}=B A$ since we know that multiplying by an elementary matrix performs the actual row operation.

To be continued. . .

