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Invertible matrices
Theorem. 1. An elementary matrix is invertible.
2. If an n ×m-matrix A is invertible, then m = n.
3. An n × n-matrix A is invertible if and only if it can be represented as a
product of elementary matrices.

Proof. 1. Proved in the previous class.
2. Suppose that m 6= n, and there exist matrices A and B such that
A · B = Im and B · A = In. Without loss of generality, m > n (otherwise
swap A with B). Let us show that AB = Im leads to a contradiction. We
have E1 · E2 · · ·Ep · A = R, where R is the reduced row echelon form of A,
and Ei are appropriate elementary matrices. Therefore,

R · B = E1 · E2 · · ·Ep · A · B = E1 · E2 · · ·Ep .

From that, we immediately deduce

R · B · (Ep)
−1 · · · (E2)

−1 · (E1)
−1 = Im .
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Invertible matrices

But if we assume m > n, the last row of R is inevitably zero (there is no
room for m pivots), so the last row of

Im = R · B · (Ep)
−1 · · · (E2)

−1 · (E1)
−1

is zero too, a contradiction.

3. If A can be represented as a product of elementary matrices, it is
invertible, since products of invertible matrices are invertible. If A is
invertible, then the last row of its reduced row echelon form must be
non-zero, or we get a contradiction like in the previous argument.
Therefore, each row of the reduced row echelon form of A, and hence, by
previous result, each column of the reduced row echelon form of A, has a
pivot, so the reduced row echelon form of A is the identity matrix. We
conclude that E1 · E2 · · ·Ep · A = In, so A = (Ep)

−1 · · · (E2)
−1 · (E1)

−1,
which is a product of elementary matrices.
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One more property of inverses

There is another useful property that is proved completely analogously:

If for an n × n-matrix A, there exists a “one-sided” inverse
(that is, B for which only one of the two conditions AB = In
and BA = In are satisfied), then B = A−1.

To prove it, it is enough to consider the case AB = In (otherwise we can
swap the roles of A and B). In this case, we proceed as before to conclude
that the reduced row echelon form of A cannot have a row of zeros, hence
that reduced row echelon form is the identity matrix, hence A is invertible.
Finally, A−1(AB) = (A−1A)B = InB = B.

Warning: we know that for m 6= n an m × n-matrix cannot be invertible,
but such a matrix can have a one-sided inverse. You will be asked to
construct an example in the next homework.
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Computing inverses

Our results lead to an elegant algorithm for computing the inverse of an
n × n-matrix A.

Form an n × (2n)-matrix (A | In). Apply the usual algorithm to compute
its reduced row echelon form. If A is invertible, the output is a matrix of
the form (In | B), where B = A−1.

Justification. If A is invertible, its reduced row echelon form is the
identity matrix In. Therefore, the computation of the reduced row echelon
form of (A | In) will produce a matrix of the form (In | B), since pivots
emerge from the left to the right. This matrix is clearly in its reduced row
echelon form. Let us take the elementary matrices corresponding to the
appropriate row operations, so that E1 · E2 · · ·Ep · A = In. This means, as
we just proved, that A−1 = E1 · E2 · · ·Ep. It remains to remark that

E1 · E2 · · ·Ep · (A | In) = (E1 · E2 · · ·Ep · A | E1 · E2 · · ·Ep),

so (In | B) = (In | E1 · E2 · · ·Ep) = (In | A−1).
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Towards computing determinants

In school, you may have seen either the formula

A−1 =

(
d

ad−bc
−b

ad−bc
−c

ad−bc
a

ad−bc

)

for a 2× 2-matrix A =

(
a b
c d

)
, or its consequence, the formula

{
x = de−bf

ad−bc ,

y = af−ce
ad−bc ,

allowing to solve a system of two equations with two unknowns{
ax + by = e,

cx + dy = f .

Now, we shall see how to generalise these formulas for n × n-matrices.
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Permutations

To proceed, we need to introduce the notion of a permutation. By
definition, a permutation of n elements is a rearrangement of numbers
1, 2, . . . , n in a particular order.

For example, 1, 3, 4, 2 is a permutation of four elements, and 1, 4, 3, 4, 2 is
not (because the number 4 is repeated).

We shall also use the two-row notation for permutations: a permutation of
n elements may be represented by a 2× n-matrix made up of columns(

j
aj

)
, where aj is the number at the j-th place in the permutation.

For example, the permutation 1, 3, 4, 2 may be represented by the matrix(
1 2 3 4
1 3 4 2

)
, but also by the matrix

(
1 4 3 2
1 2 4 3

)
, and by many other

matrices.

Incidentally, the number of different permutations of n elements is equal to
1 · 2 · · · n, this number is called “n factorial” and is denoted by n! (n with
an exclamation mark).
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Odd and even permutations

Let σ be a permutation of n elements, written in the one-row notation.
Two numbers i and j , where 1 6 i < j 6 n, are said to form an inversion
in σ, if they are “listed in wrong order”, that is j appears before i in σ.

For the permutation 1, 3, 4, 2, there are 6 pairs (i , j) to look at: (1, 2),
(1, 3), (1, 4), (2, 3), (2, 4), (3, 4). Of these, the pair (2, 3) forms an
inversion, and the pair (2, 4) does, and other pairs do not.

A permutation is said to be even if its number of inversions is even, and
odd otherwise. One of the most important properties of this division into
even and odd (which we shall prove next week) is the following: if we swap
two numbers in a permutation a1, . . . , an, it makes an even permutation
into an odd one, and vice versa.
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