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Odd and even permutations
Let σ be a permutation of n elements, written in the one-row notation.
Two numbers i and j , where 1 6 i < j 6 n, are said to form an inversion
in σ, if they are “listed in wrong order”, that is j appears before i in σ.

For the permutation 1, 3, 4, 2, there are 6 pairs (i , j) to look at: (1, 2),
(1, 3), (1, 4), (2, 3), (2, 4), (3, 4). Of these, the pair (2, 3) forms an
inversion, and the pair (2, 4) does, and other pairs do not.

A permutation is said to be even if its number of inversions is even, and
odd otherwise. One of the most important properties of this division into
even and odd is the following: if we swap two numbers in a permutation
a1, . . . , an, it makes an even permutation into an odd one, and vice versa.

Let us first remark that this is obvious if we swap two neighbours, ap and
ap+1. Indeed, this only changes whether they form an inversion or not,
since their positions relative to others do not change. Now, a swap of ap
and aq can be done by dragging ap through ap+1, . . . , aq−1, swapping it
with aq, and dragging aq through aq−1, . . . , ap+1, so altogether we do an
odd number of “swapping neighbours”, and changed odd to even / even
to odd.
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Odd and even permutations
The property that we just proved is useful for a yet another definition of
even / odd permutations that refers to the two-row notation. Namely, a
permutation in two-row notation is even if the total number of inversions
in the top and the bottom row is even, and is odd, if the total number of
inversions in the top and the bottom row is odd.

The usual problem to address is whether this definition makes sense or not:
maybe it will give different answers for different two-row representations.
Luckily, it is not the case: different representations are obtained from one
another by re-arranging columns, and each swap of columns will change
the number of inversions in the top row and in the bottom row by odd
numbers, so altogether will give a change by an even number.

For example, the two different representations of 1, 3, 4, 2, that we

discussed, we observe that for

(
1 2 3 4
1 3 4 2

)
, the total number of

inversions is 2, and for

(
1 4 3 2
1 2 4 3

)
the total number of inversions is

3 + 1 = 4.
Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 8 3 / 8



Determinants

We shall now define an important numeric invariant of an n × n-matrix A,
the determinant of A, denoted det(A). Informally, the determinant of A is
the signed sum of all possible products of n entries of A, chosen in a way
that every row and every column is represented in the product exactly
once.

Formally,

det(A) =
∑
σ

sgn(σ)Ai1j1Ai2j2 · · ·Ainjn .

Here σ runs over all permutations of n elements, and

(
i1 i2 . . . in
j1 j2 . . . jn

)
is

some two-row representation of σ. The sign sgn(σ) of a permutation σ is
defined to be 1 if σ is even, and −1 if σ is odd.
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Examples of determinants

For a 2 × 2-matrix A =

(
a b
c d

)
, we have

det(A) = ad − bc.

Indeed, there are two permutations of 1, 2: 1, 2 and 2, 1, the first one
even, the second one odd.

For a 3 × 3-matrix A =

a b c
d e f
g h k

, we have

det(A) = aek + bfg + cdh − ceg − afk − bdk.

An easy way to memorise: copy two first columns of A next to ita b c a b
d e f d e
g h k g h

 ,

then multiply along the six “diagonals”, and take northwest diagonals with
the plus sign and northeast diagonals with the minus sign. Does not work
for n > 3 !!!!
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Examples of determinants

If matrix A is a diagonal matrix (with entries d1, . . . , dn on the diagonal
and zeros elsewhere), then det(A) = d1d2 · · · dn, since the only way to
choose n entries in n different rows of A in a way that no zeros are chosen,
is to take the diagonal entries; this corresponds to the permutation
1, 2, . . . , n which is clearly even.

In particular, det(In) = 1.

More generally, if matrix A is an upper triangular matrix (with entries d1,
. . . , dn on the diagonal, some entries above the diagonal, and zeros below
the diagonal), then det(A) = d1d2 · · · dn, since the only way to choose n
entries in n different rows and n different columns of A in a way that no
zeros are chosen, is to take the diagonal entries.
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Properties of determinants

Let me list some properties of determinants that are most useful in
calculations.

If three matrices A, A ′, and A ′′ have all rows except for the i-th row
i in common, and the i-th row of A is equal to the sum of the i-th
rows of A ′ and A ′′, then det(A) = det(A ′) + det(A ′′);
if two matrices A and A ′ have all rows except for the i-th row in
common, and the i-th row of A ′ is obtained from the i-th row of A
by multiplying it by a scalar c , then det(A ′) = c det(A);
if two matrices A and A ′ have all rows except for the i-th and the
j-th row in common, and A ′ is obtained from the A by swapping the
i-th row with the j-th row, then det(A ′) = − det(A);
if two matrices A and A ′ have all rows except for the i-th row in
common, and the i-th row of A ′ is obtained from the i-th row of A
by adding a multiple of another row, then det(A ′) = det(A);
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Properties of determinants

Effectively, these properties say that

- determinants are multilinear functions of their rows,
- determinants behave predictably with respect to elementary row

operations.

Let us give an example of how this can be used:

det

1 2 2
1 2 8
1 1 4

 (2)−(1),(3)−(1)
= det

1 2 2
0 0 6
0 −1 2

 =

(−1) · 6 · det

1 2 2
0 0 1
0 1 −2

 (2)↔(3)
= 6 det

1 2 2
0 1 −2
0 0 1

 = 6.
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