1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 11

Bilinear and quadratic forms

Recall the definition from the last class.

Definition 1. Let V be a vector space. A function $V \times V \to \mathbb{R}$, $\nu_1, \nu_2 \mapsto b(\nu_1, \nu_2)$ is called a bilinear form if for all vectors ν, ν_1, ν_2 the following conditions are satisfied:

$$b(c_1\nu_1 + c_2\nu_2, \nu) = c_1b(\nu_1, \nu) + c_2b(\nu_2, \nu) \quad \text{ and } \quad b(\nu, c_1\nu_1 + c_2\nu_2) = c_1b(\nu, \nu_1) + c_2b(\nu, \nu_2).$$

A bilinear form is said to be symmetric if $b(v_1, v_2) = b(v_2, v_1)$ for all v_1, v_2 , and skew-symmetric if $b(v_1, v_2) = -b(v_2, v_1)$ for all v_1, v_2 . A symmetric bilinear form is said to be *positive semidefinite* if $b(v, v) \ge 0$ for all v, and *positive definite*, if b(v, v) > 0 for $v \ne 0$. In these words, a function of two vector arguments is a scalar product if and only if it is bilinear, symmetric, and positive definite.

Remark 1. Generalising what we proved about scalar products, for every bilinear form b and every basis e_1, \ldots, e_n of V, we have

$$\mathbf{b}(\mathbf{x}_1\mathbf{e}_1+\ldots+\mathbf{x}_n\mathbf{e}_n,\mathbf{y}_1\mathbf{e}_1+\ldots+\mathbf{y}_n\mathbf{e}_n)=\sum_{i,j=1}^n\mathbf{b}_{ij}\mathbf{x}_i\mathbf{y}_j,$$

where $b_{ij} = b(e_i, e_j)$. Moreover, this number corresponds to the 1×1 -matrix $x^T By$, where B is the matrix with entries b_{ij} .

Every bilinear form b gives rise to a quadratic form by putting q(x) = b(x, x), for example, the bilinear form

$$b(x_1e_1 + x_2e_2, y_1e_1 + y_2e_2) = 2x_1y_2$$

gives rise to a quadratic form $2x_1x_2$, and the bilinear form

$$b(x_1e_1 + x_2e_2, y_1e_1 + y_2e_2) = x_1y_2 + x_2y_1$$

gives rise to the same quadratic form. It turns out that the reconstruction of b from q is unique if we assume that b is symmetric; in this case the reconstruction formula is

$$\mathbf{b}(\mathbf{v},\mathbf{w}) := \frac{1}{2}(\mathbf{q}(\mathbf{v}+\mathbf{w}) - \mathbf{q}(\mathbf{v}) - \mathbf{q}(\mathbf{w})).$$

Indeed, if q(v) = b(v, v), then

$$\frac{1}{2}(q(v+w) - q(v) - q(w)) = \frac{1}{2}(b(v+w,v+w) - b(v,v) - b(w,w)) = \frac{1}{2}(b(v,v) + b(v,w) + b(w,v) + b(w,w) - b(v,v) - b(w,w)) = \frac{1}{2}(b(v,w) + b(w,v)),$$

which, for a symmetric bilinear form, is b(v, w).

The coefficients a_{ij} of a quadratic form and the coefficients b_{ij} of the corresponding symmetric bilinear form are related by $a_{ii} = b_{ii}$ and $a_{ij} = b_{ij} + b_{ji} = 2b_{ij}$ for i < j.

We shall now formulate several theorems about quadratic forms and symmetric bilinear forms; they will be a topic of our tutorial class and the next problem sheet, and next week we shall discuss their proofs in detail.

One celebrated example of a quadratic form is $q(x_1, x_2, x_3, t) = x_1^2 + x_2^2 + x_3^2 - t^2$ on the Minkowski space \mathbb{R}^4 , it is used in special relativity theory. This serves as a (humble) motivation for the following result.

Theorem 1. Let q be a quadratic form on a vector space V. There exists a basis f_1, \ldots, f_n of V for which the quadratic form q becomes a signed sum of squares:

$$q(x_1f_1+\dots+x_nf_n)=\sum_{i=1}^n\epsilon_ix_i^2,$$

where all numbers ε_i are either 1 or -1 or 0.

Theorem 2 (Law of inertia). In the previous theorem, the triple (n_+, n_-, n_0) , where n_{\pm} is the number of ε_i equal to ± 1 , and n_0 is the number of ε_i equal to 0, does not depend on the choice of the basis f_1, \ldots, f_n . This triple is often referred to as the signature of the quadratic form q.

Let $B = (b_{ij})$ be the matrix of a given symmetric bilinear form b on V. We shall now discuss some methods of computing the signature of b via the matrix elements of B.

Theorem 3. The signature of B is completely determined by eigenvalues of B: the number n_+ is the number of positive eigenvalues, the number n_- is the number of negative eigenvalues, and the number n_0 is the number of zero eigenvalues.

Note that this theorem makes sense because all eigenvalues of a symmetric matrix are real.

Let us denote by B_k the $k \times k$ -matrix whose entries are b_{ij} with $1 \le i, j \le k$, that is the top left corner submatrix of B. We put $\Delta_0 = 1$ and $\Delta_k := \det(B_k)$ for $1 \le k \le n$.

Theorem 4 (Jacobi diagonal form). Suppose that for all i = 1, ..., n we have $\Delta_i \neq 0$. Then there exists a system of coordinates where the matrix of b is a diagonal matrix with the numbers $\frac{\Delta_{k-1}}{\Delta_{k}}$ on the diagonal.

Theorem 5 (Sylvester's criterion). The given symmetric bilinear form is positive definite if and only if

 $\Delta_k > 0$ for all $k = 1, \ldots, n$.