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Lecture 11

Bilinear and quadratic forms

Recall the definition from the last class.

Definition 1. Let V be a vector space. A function V × V → R, v1, v2 7→ b(v1, v2) is called a bilinear form
if for all vectors v, v1, v2 the following conditions are satisfied:

b(c1v1 + c2v2, v) = c1b(v1, v) + c2b(v2, v) and b(v, c1v1 + c2v2) = c1b(v, v1) + c2b(v, v2).

A bilinear form is said to be symmetric if b(v1, v2) = b(v2, v1) for all v1, v2, and skew-symmetric if
b(v1, v2) = −b(v2, v1) for all v1, v2. A symmetric bilinear form is said to be positive semidefinite if b(v, v) > 0
for all v, and positive definite, if b(v, v) > 0 for v 6= 0. In these words, a function of two vector arguments is
a scalar product if and only if it is bilinear, symmetric, and positive definite.

Remark 1. Generalising what we proved about scalar products, for every bilinear form b and every basis
e1, . . . , en of V, we have

b(x1e1 + . . .+ xnen, y1e1 + . . .+ ynen) =

n∑
i,j=1

bijxiyj,

where bij = b(ei, ej). Moreover, this number corresponds to the 1× 1-matrix xTBy, where B is the matrix
with entries bij.

Every bilinear form b gives rise to a quadratic form by putting q(x) = b(x, x), for example, the bilinear
form

b(x1e1 + x2e2, y1e1 + y2e2) = 2x1y2

gives rise to a quadratic form 2x1x2, and the bilinear form

b(x1e1 + x2e2, y1e1 + y2e2) = x1y2 + x2y1

gives rise to the same quadratic form. It turns out that the reconstruction of b from q is unique if we assume
that b is symmetric; in this case the reconstruction formula is

b(v,w) :=
1

2
(q(v+w) − q(v) − q(w)).

Indeed, if q(v) = b(v, v), then

1

2
(q(v+w) − q(v) − q(w)) =

1

2
(b(v+w, v+w) − b(v, v) − b(w,w)) =

=
1

2
(b(v, v) + b(v,w) + b(w, v) + b(w,w) − b(v, v) − b(w,w)) =

1

2
(b(v,w) + b(w, v)),

which, for a symmetric bilinear form, is b(v,w).
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The coefficients aij of a quadratic form and the coefficients bij of the corresponding symmetric bilinear
form are related by aii = bii and aij = bij + bji = 2bij for i < j.

We shall now formulate several theorems about quadratic forms and symmetric bilinear forms; they will
be a topic of our tutorial class and the next problem sheet, and next week we shall discuss their proofs in
detail.

One celebrated example of a quadratic form is q(x1, x2, x3, t) = x
2
1+x

2
2+x

2
3− t

2 on the Minkowski space
R4, it is used in special relativity theory. This serves as a (humble) motivation for the following result.

Theorem 1. Let q be a quadratic form on a vector space V. There exists a basis f1, . . . , fn of V for which
the quadratic form q becomes a signed sum of squares:

q(x1f1 + · · ·+ xnfn) =
n∑
i=1

εix
2
i ,

where all numbers εi are either 1 or −1 or 0.

Theorem 2 (Law of inertia). In the previous theorem, the triple (n+, n−, n0), where n± is the number of
εi equal to ±1, and n0 is the number of εi equal to 0, does not depend on the choice of the basis f1, . . . , fn.
This triple is often referred to as the signature of the quadratic form q.

Let B = (bij) be the matrix of a given symmetric bilinear form b on V. We shall now discuss some
methods of computing the signature of b via the matrix elements of B.

Theorem 3. The signature of B is completely determined by eigenvalues of B: the number n+ is the
number of positive eigenvalues, the number n− is the number of negative eigenvalues, and the number n0 is
the number of zero eigenvalues.

Note that this theorem makes sense because all eigenvalues of a symmetric matrix are real.
Let us denote by Bk the k× k-matrix whose entries are bij with 1 6 i, j 6 k, that is the top left corner

submatrix of B. We put ∆0 = 1 and ∆k := det(Bk) for 1 6 k 6 n.

Theorem 4 (Jacobi diagonal form). Suppose that for all i = 1, . . . , n we have ∆i 6= 0. Then there exists a
system of coordinates where the matrix of b is a diagonal matrix with the numbers ∆k−1

∆k
on the diagonal.

Theorem 5 (Sylvester’s criterion). The given symmetric bilinear form is positive definite if and only if

∆k > 0 for all k = 1, . . . , n.
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