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Dr. Vladimir Dotsenko (Vlad)

Lecture 11

Bilinear and quadratic forms
Recall the definition from the last class.

Definition 1. Let V be a vector space. A function V x V — R, vi,v, — b(vq,Vv3) is called a bilinear form
if for all vectors v,v1,v, the following conditions are satisfied:

b(civi + cava,v) = c1b(vy,v) +c2b(va,v) and b(v,civi +c2vz) = c1b(v,v1) + cab(v,va).

A bilinear form is said to be symmetric if b(vi,v2) = b(va,vq) for all vi,v;, and skew-symmetric if
b(vy,v2) = —b(vz,vq) for all vi,v,. A symmetric bilinear form is said to be positive semidefinite if b(v,v) > 0
for all v, and positive definite, if b(v,v) > 0 for v # 0. In these words, a function of two vector arguments is
a scalar product if and only if it is bilinear, symmetric, and positive definite.

Remark 1. Generalising what we proved about scalar products, for every bilinear form b and every basis
er, ..., en of V, we have

n
b(x1e1+ ...+ Xnen,y1€1 + ...+ Ynen) = Y biyxiy;,

i,j=1
where by; = b(ey, e5). Moreover, this number corresponds to the 1 x 1-matrix xT"By, where B is the matrix

with entries by;.

Every bilinear form b gives rise to a quadratic form by putting q(x) = b(x,x), for example, the bilinear
form
b(xrer +x2€2,y1€1 +yz€2) = 2x1Y2

gives rise to a quadratic form 2x;x;,, and the bilinear form
b(xier +x2e2,y1e1 +Y2e2) = X1Y2 + X2y

gives rise to the same quadratic form. It turns out that the reconstruction of b from q is unique if we assume
that b is symmetric; in this case the reconstruction formula is

blv,w) = 1 (alv +w) — qlv) — q(w))

Indeed, if q(v) = b(v,v), then
Tatv+w) — qv) — a(w)) = 3 (b(v+wyv £ ) — by, v) — blw,w)) =
= 1(b(v,v) +b(v,w) + b(w,v) + b(w,w) —b(v,v) —b(w,w)) =

3 (b(v, W) +b(w, V)],

N —

which, for a symmetric bilinear form, is b(v, w).



The coefficients aij of a quadratic form and the coefficients by; of the corresponding symmetric bilinear
form are related by ai; = bi; and ayj; = byj + bj; = 2by; for i < j.

We shall now formulate several theorems about quadratic forms and symmetric bilinear forms; they will
be a topic of our tutorial class and the next problem sheet, and next week we shall discuss their proofs in
detail.

One celebrated example of a quadratic form is q(x1,%2,%x3,t) = x5 +%x3 +x§ —1t? on the Minkowski space
R, it is used in special relativity theory. This serves as a (humble) motivation for the following result.

Theorem 1. Let q be a quadratic form on a vector space V. There exists a basis f1,...,fn of V for which
the quadratic form q becomes a signed sum of squares:

n
qafi+- - xnfa) = ) e,
-

where all numbers ¢; are either 1 or —1 or 0.

Theorem 2 (Law of inertia). In the previous theorem, the triple (ny,n_,ng), where ny is the number of
ei equal to 1, and ng is the number of ¢; equal to 0, does not depend on the choice of the basis f1,...,fn.
This triple is often referred to as the signature of the quadratic form q.

Let B = (bij) be the matrix of a given symmetric bilinear form b on V. We shall now discuss some
methods of computing the signature of b via the matrix elements of B.

Theorem 3. The signature of B is completely determined by eigenvalues of B: the mumber n. is the
number of positive eigenvalues, the number n_ is the number of negative eigenvalues, and the number ng is
the number of zero eigenvalues.

Note that this theorem makes sense because all eigenvalues of a symmetric matrix are real.
Let us denote by By the k x k-matrix whose entries are by; with 1 <1i,j <k, that is the top left corner
submatrix of B. We put Ag = 1 and Ay :=det(By) for T <k < n.

Theorem 4 (Jacobi diagonal form). Suppose that for alli=1,...,n we have Ay # 0. Then there exists a

system of coordinates where the matriz of b is a diagonal matriz with the numbers AK—;‘ on the diagonal.

Theorem 5 (Sylvester’s criterion). The given symmetric bilinear form is positive definite if and only if

Ay >0 forall k=1,...,n.



