1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 11

Bilinear and quadratic forms

Recall the definition from the last class.
Definition 1. Let V be a vector space. A function $\mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}, v_{1}, v_{2} \mapsto \mathrm{~b}\left(v_{1}, v_{2}\right)$ is called a bilinear form if for all vectors v, v_{1}, v_{2} the following conditions are satisfied:

$$
\mathfrak{b}\left(\mathfrak{c}_{1} v_{1}+\mathfrak{c}_{2} v_{2}, v\right)=\mathfrak{c}_{1} b\left(v_{1}, v\right)+\mathfrak{c}_{2} b\left(v_{2}, v\right) \quad \text { and } \quad b\left(v, c_{1} v_{1}+c_{2} v_{2}\right)=c_{1} b\left(v, v_{1}\right)+c_{2} b\left(v, v_{2}\right) .
$$

A bilinear form is said to be symmetric if $\mathfrak{b}\left(v_{1}, v_{2}\right)=\mathrm{b}\left(v_{2}, v_{1}\right)$ for all v_{1}, v_{2}, and skew-symmetric if $\mathfrak{b}\left(v_{1}, v_{2}\right)=-\mathbf{b}\left(v_{2}, v_{1}\right)$ for all v_{1}, v_{2}. A symmetric bilinear form is said to be positive semidefinite if $\mathbf{b}(v, v) \geqslant 0$ for all v, and positive definite, if $\mathfrak{b}(v, v)>0$ for $v \neq 0$. In these words, a function of two vector arguments is a scalar product if and only if it is bilinear, symmetric, and positive definite.
Remark 1. Generalising what we proved about scalar products, for every bilinear form b and every basis e_{1}, \ldots, e_{n} of V, we have

$$
b\left(x_{1} e_{1}+\ldots+x_{n} e_{n}, y_{1} e_{1}+\ldots+y_{n} e_{n}\right)=\sum_{i, j=1}^{n} b_{i j} x_{i} y_{j}
$$

where $b_{i j}=b\left(e_{i}, e_{j}\right)$. Moreover, this number corresponds to the 1×1-matrix $x^{\top} B y$, where B is the matrix with entries $b_{i j}$.

Every bilinear form b gives rise to a quadratic form by putting $q(x)=b(x, x)$, for example, the bilinear form

$$
b\left(x_{1} e_{1}+x_{2} e_{2}, y_{1} e_{1}+y_{2} e_{2}\right)=2 x_{1} y_{2}
$$

gives rise to a quadratic form $2 x_{1} x_{2}$, and the bilinear form

$$
b\left(x_{1} e_{1}+x_{2} e_{2}, y_{1} e_{1}+y_{2} e_{2}\right)=x_{1} y_{2}+x_{2} y_{1}
$$

gives rise to the same quadratic form. It turns out that the reconstruction of b from q is unique if we assume that b is symmetric; in this case the reconstruction formula is

$$
\mathrm{b}(v, w):=\frac{1}{2}(\mathrm{q}(v+w)-\mathrm{q}(v)-\mathrm{q}(w)) .
$$

Indeed, if $\mathbf{q}(v)=\mathrm{b}(v, v)$, then

$$
\begin{aligned}
& \frac{1}{2}(\mathrm{q}(v+w)-\mathrm{q}(v)-\mathrm{q}(w))=\frac{1}{2}(\mathrm{~b}(v+w, v+w)-\mathrm{b}(v, v)-\mathrm{b}(w, w))= \\
& \quad=\frac{1}{2}(\mathrm{~b}(v, v)+\mathrm{b}(v, w)+\mathrm{b}(w, v)+\mathrm{b}(w, w)-\mathrm{b}(v, v)-\mathrm{b}(w, w))=\frac{1}{2}(\mathrm{~b}(v, w)+\mathrm{b}(w, v))
\end{aligned}
$$

which, for a symmetric bilinear form, is $\mathfrak{b}(v, w)$.

The coefficients $a_{i j}$ of a quadratic form and the coefficients $b_{i j}$ of the corresponding symmetric bilinear form are related by $a_{i i}=b_{i i}$ and $a_{i j}=b_{i j}+b_{j i}=2 b_{i j}$ for $i<j$.

We shall now formulate several theorems about quadratic forms and symmetric bilinear forms; they will be a topic of our tutorial class and the next problem sheet, and next week we shall discuss their proofs in detail.

One celebrated example of a quadratic form is $q\left(x_{1}, x_{2}, x_{3}, t\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-t^{2}$ on the Minkowski space \mathbb{R}^{4}, it is used in special relativity theory. This serves as a (humble) motivation for the following result.

Theorem 1. Let q be a quadratic form on a vector space V . There exists a basis $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}}$ of V for which the quadratic form q becomes a signed sum of squares:

$$
q\left(x_{1} f_{1}+\cdots+x_{n} f_{n}\right)=\sum_{i=1}^{n} \varepsilon_{i} x_{i}^{2}
$$

where all numbers $\varepsilon_{\mathfrak{i}}$ are either 1 or -1 or 0 .
Theorem 2 (Law of inertia). In the previous theorem, the triple $\left(n_{+}, n_{-}, n_{0}\right)$, where $n_{ \pm}$is the number of $\varepsilon_{\mathfrak{i}}$ equal to ± 1, and n_{0} is the number of $\varepsilon_{\mathfrak{i}}$ equal to 0 , does not depend on the choice of the basis $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}}$. This triple is often referred to as the signature of the quadratic form q .

Let $B=\left(b_{i j}\right)$ be the matrix of a given symmetric bilinear form b on V. We shall now discuss some methods of computing the signature of b via the matrix elements of B.

Theorem 3. The signature of B is completely determined by eigenvalues of B : the number n_{+}is the number of positive eigenvalues, the number n_{-}is the number of negative eigenvalues, and the number n_{0} is the number of zero eigenvalues.

Note that this theorem makes sense because all eigenvalues of a symmetric matrix are real.
Let us denote by B_{k} the $k \times k$-matrix whose entries are $b_{i j}$ with $1 \leqslant i, j \leqslant k$, that is the top left corner submatrix of B. We put $\Delta_{0}=1$ and $\Delta_{k}:=\operatorname{det}\left(B_{k}\right)$ for $1 \leqslant k \leqslant n$.

Theorem 4 (Jacobi diagonal form). Suppose that for all $\mathfrak{i}=1, \ldots, n$ we have $\Delta_{i} \neq 0$. Then there exists a system of coordinates where the matrix of b is a diagonal matrix with the numbers $\frac{\Delta_{k-1}}{\Delta_{\mathrm{k}}}$ on the diagonal.
Theorem 5 (Sylvester's criterion). The given symmetric bilinear form is positive definite if and only if

$$
\Delta_{\mathrm{k}}>0 \quad \text { for all } \mathrm{k}=1, \ldots, \mathrm{n}
$$

