1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 12

Today we shall start proving the theorems on quadratic forms that you used in the tutorial class last week.

Theorem 1. Let q be a quadratic form on a vector space V. There exists a basis f_1, \ldots, f_n of V for which the quadratic form q becomes a signed sum of squares:

$$q(x_1f_1+\cdots+x_nf_n)=\sum_{i=1}^n\epsilon_ix_i^2,$$

where all numbers ε_i are either 1 or -1 or 0.

Proof. We shall prove the appropriate statement for symmetric bilinear forms; it is a bit more transparent that way. Suppose that b is a symmetric bilinear form. If q(v) = b(v, v) = 0 for all v, then we have the representation with all $\varepsilon_i = 0$. Suppose that there exists a vector v with $q(v) \neq 0$. Consider some basis $e_1, e_2, \ldots, e_n = v$ of V. We claim that we can change it into a basis f_1, f_2, \ldots, f_n with $b(f_n, f_n) = \pm 1$, and $b(f_i, f_n) = 0$ for all $i = 1, \ldots, n-1$. Indeed, we can replace e_n by $f_n = \frac{1}{\sqrt{|q(e_n)|}}e_n$, and then replace e_i by $f_i = e_i - \frac{b(e_i, f_n)}{b(f_n, f_n)}f_n$. Then we may consider the linear span of f_1, \ldots, f_{n-1} , and proceed by induction on dimension.

Theorem 2 (Law of inertia). In the previous theorem, the triple (n_+, n_-, n_0) , where n_{\pm} is the number of ε_i equal to ± 1 , and n_0 is the number of ε_i equal to 0, does not depend on the choice of the basis f_1, \ldots, f_n . This triple is often referred to as the signature of the quadratic form q.

Proof. Suppose that we have a basis

$$e_1,\ldots,e_{n_+},f_1,\ldots,f_{n_-},g_1,\ldots,g_{n_0}$$

which produces a system of coordinates where q becomes a signed sum of squares with n_+ of ε_i are equal to 1, n_- of ε_i are equal to -1, and n_0 of ε_i are equal to 0. Let us note that for the corresponding bilinear form b, the subspace spanned by g_1, \ldots, g_{n_0} is its kernel, that is the space of all vectors **u** for which $b(\mathbf{u}, \mathbf{v}) = 0$ for all $\mathbf{v} \in \mathbf{V}$. Indeed, those conditions read $b(\mathbf{u}, \mathbf{e}_i) = b(\mathbf{u}, f_j) = b(\mathbf{u}, g_k) = 0$ for all i, j, k, which by inspection shows that **u** is a linear combination of g_k . Suppose now that there are two different bases

$$e_1, \ldots, e_{n_+}, f_1, \ldots, f_{n_-}, g_1, \ldots, g_{n_0}$$

and

$$e'_1, \ldots, e_{n'_+}, f'_1, \ldots, f_{n'_-}, g'_1, \ldots, g'_{n'_+}$$

where q is a signed sum of squares, and $n_+ \neq n'_+$, so without loss of generality $n_+ > n'_+$. Note that this implies that $n_- < n'_-$. Consider the vectors

$$e_1,\ldots,e_{n_+},f'_1,\ldots,f'_{n'},g_1,\ldots,g_{n_0}.$$

The total number of those vectors exceeds the dimension of V, so they must be linearly dependent, that is

$$a_1e_1 + \dots + a_{n_+}e_{n_+} + b_1f'_1 + \dots + b_{n'_-}f'_{n'_-} + c_1g_1 + \dots + c_{n_0}g_{n_0} = 0$$

for some scalars $a_i, b_j, c_k.$ Let us rewrite it as

$$a_1e_1 + \cdots + a_{n_+}e_{n_+} + c_1g_1 + \cdots + c_{n_0}g_{n_0} = -(b_1f'_1 + \cdots + b_{n'_-}f'_{n'_-}),$$

and denote the vector to which both the left hand side and the right hand side are equal to by v. Then

$$a_1^2 + \dots + a_{n_+}^2 = q(v) = -b_1^2 - \dots - b_{n_-}^2,$$

which implies

$$a_1 = \cdots = a_{n_+} = b_1 = \cdots = b_{n_-} = 0,$$

and substituting it into

$$a_1e_1 + \dots + a_{n_+}e_{n_+} + b_1f'_1 + \dots + b_{n'_-}f'_{n'} + c_1g_1 + \dots + c_{n_0}g_{n_0} = 0$$

we get

$$c_1g_1+\cdots+c_{n_0}g_{n_0}=0,$$

implying of course $c_1 = \cdots = c_{n_0} = 0$, which altogether shows that these vectors cannot be linearly dependent, a contradiction.