
1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 12

Today we shall start proving the theorems on quadratic forms that you used in the tutorial class last
week.

Theorem 1. Let q be a quadratic form on a vector space V. There exists a basis f1, . . . , fn of V for which
the quadratic form q becomes a signed sum of squares:

q(x1f1 + · · ·+ xnfn) =

n∑
i=1

εix
2
i ,

where all numbers εi are either 1 or −1 or 0.

Proof. We shall prove the appropriate statement for symmetric bilinear forms; it is a bit more transparent
that way. Suppose that b is a symmetric bilinear form. If q(v) = b(v, v) = 0 for all v, then we have the
representation with all εi = 0. Suppose that there exists a vector v with q(v) 6= 0. Consider some basis
e1, e2, . . . , en = v of V. We claim that we can change it into a basis f1, f2, . . . , fn with b(fn, fn) = ±1, and
b(fi, fn) = 0 for all i = 1, . . . , n− 1. Indeed, we can replace en by fn = 1√

|q(en)|
en, and then replace ei by

fi = ei −
b(ei,fn)
b(fn,fn)fn. Then we may consider the linear span of f1, . . . , fn−1, and proceed by induction on

dimension.

Theorem 2 (Law of inertia). In the previous theorem, the triple (n+, n−, n0), where n± is the number of
εi equal to ±1, and n0 is the number of εi equal to 0, does not depend on the choice of the basis f1, . . . , fn.
This triple is often referred to as the signature of the quadratic form q.

Proof. Suppose that we have a basis

e1, . . . , en+
, f1, . . . , fn−

, g1, . . . , gn0

which produces a system of coordinates where q becomes a signed sum of squares with n+of εi are equal to 1,
n− of εi are equal to −1, and n0 of εi are equal to 0. Let us note that for the corresponding bilinear form b,
the subspace spanned by g1, . . . , gn0

is its kernel, that is the space of all vectors u for which b(u, v) = 0 for
all v ∈ V. Indeed, those conditions read b(u, ei) = b(u, fj) = b(u, gk) = 0 for all i, j, k, which by inspection
shows that u is a linear combination of gk. Suppose now that there are two different bases

e1, . . . , en+
, f1, . . . , fn−

, g1, . . . , gn0

and
e ′1, . . . , en ′

+
, f ′1, . . . , fn ′

−
, g ′1, . . . , g

′
n0

where q is a signed sum of squares, and n+ 6= n ′+, so without loss of generality n+ > n ′+. Note that this
implies that n− < n ′−. Consider the vectors

e1, . . . , en+
, f ′1, . . . , f

′
n ′

−
, g1, . . . , gn0

.
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The total number of those vectors exceeds the dimension of V, so they must be linearly dependent, that is

a1e1 + · · ·+ an+
en+

+ b1f
′
1 + · · ·+ bn ′

−
f ′n ′

−
+ c1g1 + · · ·+ cn0

gn0
= 0

for some scalars ai, bj, ck. Let us rewrite it as

a1e1 + · · ·+ an+
en+

+ c1g1 + · · ·+ cn0
gn0

= −(b1f
′
1 + · · ·+ bn ′

−
f ′n ′

−
),

and denote the vector to which both the left hand side and the right hand side are equal to by v. Then

a2
1 + · · ·+ a2

n+
= q(v) = −b2

1 − · · ·− b2
n−

,

which implies
a1 = · · · = an+

= b1 = · · · = bn−
= 0,

and substituting it into

a1e1 + · · ·+ an+
en+

+ b1f
′
1 + · · ·+ bn ′

−
f ′n ′

−
+ c1g1 + · · ·+ cn0

gn0
= 0

we get
c1g1 + · · ·+ cn0

gn0
= 0,

implying of course c1 = · · · = cn0
= 0, which altogether shows that these vectors cannot be linearly

dependent, a contradiction.
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