1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 13

Let $B=\left(b_{i j}\right)$ be the matrix (relative to some basis $\left.e_{1}, \ldots, e_{n}\right)$ of a given symmetric bilinear form b on V. We shall now discuss some methods of computing the signature of b via the matrix elements of B.

Theorem 1. The signature of B is completely determined by eigenvalues of B : the number n_{+}is the number of positive eigenvalues, the number n_{-}is the number of negative eigenvalues, and the number n_{0} is the number of zero eigenvalues.

Proof. We know that $\mathrm{b}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{\top} \mathrm{B} y$, which of course is equal to $\mathrm{y}^{\top} \mathrm{B} x$, since we work with symmetric bilinear forms. Let us pick an orthonormal basis of eigenvectors of the matrix B (with respect to the usual scalar product $\left.(x, y)=y^{\top} x\right) v_{1}, \ldots, v_{n}$. Then $b\left(v_{i}, v_{j}\right)=v_{j}^{\top} B v_{i}=v_{j}^{\top} c_{i} v_{i}=c_{i}\left(v_{i}, v_{j}\right)$, therefore, relative to that basis, the matrix of B is diagonal with eigenvalues on the diagonal, and the theorem follows after we normalise each basis vector: $v_{i}^{\prime}=\frac{1}{\sqrt{\mid \boldsymbol{q}\left(v_{i}\right)}} v_{i}$.

Let us denote by B_{k} the $k \times k$-matrix whose entries are $b_{i j}$ with $1 \leqslant i, j \leqslant k$, that is the top left corner submatrix of B. We put $\Delta_{k}:=\operatorname{det}\left(B_{k}\right)$ for $1 \leqslant k \leqslant n$.

Theorem 2 (Jacobi theorem). Suppose that for all $\mathfrak{i}=1, \ldots, n$ we have $\Delta_{\mathfrak{i}} \neq 0$. Then there exists a basis $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}}$ where

$$
q\left(x_{1} f_{1}+\cdots+x_{n} f_{n}\right)=\frac{1}{\Delta_{1}} x_{1}^{2}+\frac{\Delta_{1}}{\Delta_{2}} x_{2}^{2}+\cdots+\frac{\Delta_{n-1}}{\Delta_{n}} x_{n}^{2}
$$

Proof. We shall look for a basis of the form

$$
\begin{gathered}
f_{1}=a_{11} e_{1} \\
f_{2}=a_{12} e_{1}+a_{22} e_{2} \\
\ldots, \\
f_{n}=a_{1 n} e_{1}+a_{2 n} e_{2}+\cdots+a_{n n} e_{n}
\end{gathered}
$$

If we write the conditions $\mathbf{b}\left(\boldsymbol{f}_{\mathfrak{i}}, \mathrm{f}_{\mathfrak{j}}\right)=0$ for $\mathfrak{i} \neq \mathfrak{j}$ directly, we shall obtain a system of quadratic equations in the unknowns $a_{i j}$, which is difficult to solve directly. For that reason, we shall use a clever shortcut.

Suppose that we found a basis of the form given above, for which

$$
b\left(f_{i}, e_{j}\right)=0 \text { for } j=1, \ldots, i-1
$$

We shall now verify that these conditions imply $b\left(f_{i}, f_{j}\right)=0$ for $i \neq j$. Indeed, for $i>j$ we have

$$
b\left(f_{i}, f_{j}\right)=b\left(f_{i}, a_{1 j} e_{1}+a_{2 j} e_{2}+\ldots+a_{j j} e_{j}\right)=a_{1 j} b\left(f_{i}, e_{1}\right)+\cdots+a_{j j} b\left(f_{i}, e_{j}\right)=0
$$

and for $\mathfrak{i}<\mathfrak{j}$ we have $\mathbf{b}\left(\boldsymbol{f}_{\mathfrak{i}}, \mathrm{f}_{\mathfrak{j}}\right)=\mathrm{b}\left(\mathrm{f}_{\mathfrak{j}}, \mathrm{f}_{\mathfrak{i}}\right)=0$.
For a given i, the conditions

$$
b\left(f_{i}, e_{j}\right)=0 \text { for } j=1, \ldots, i-1
$$

form a system of linear equations with \mathfrak{i} unknowns and $\mathfrak{i}-1$ equations, so there will inevitably be free unknowns. To normalise the solution, let us also include the equation

$$
\mathrm{b}\left(\mathrm{f}_{\mathrm{i}}, e_{i}\right)=1
$$

Then the corresponding system of equation becomes

$$
\left\{\begin{array}{r}
b\left(e_{1}, e_{1}\right) a_{1 i}+b\left(e_{2}, e_{1}\right) a_{2 i}+\ldots+b\left(e_{i}, e_{1}\right) a_{i i}=0 \\
b\left(e_{1}, e_{2}\right) a_{1 i}+b\left(e_{2}, e_{2}\right) a_{2 i}+\ldots+b\left(e_{i}, e_{2}\right) a_{i i}=0 \\
\ldots \\
b\left(e_{1}, e_{i-1}\right) a_{1 i}+b\left(e_{2}, e_{i-1}\right) a_{2 i}+\ldots+b\left(e_{i}, e_{i-1}\right) a_{i i}=0 \\
b\left(e_{1}, e_{i}\right) a_{1 i}+b\left(e_{2}, e_{i}\right) a_{2 i}+\ldots+b\left(e_{i}, e_{i}\right) a_{i i}=1
\end{array}\right.
$$

The matrix of the this system of equation is $B_{i}^{\top}=B_{i}$, so by our assumption this system has just one solution for each $i=1, \ldots, n$.

Let us compute the diagonal entries $b\left(f_{i}, f_{i}\right)$. We have

$$
b\left(f_{i}, f_{j}\right)=b\left(f_{i}, a_{1 j} e_{1}+a_{2 j} e_{2}+\ldots+a_{i i} e_{i}\right)=a_{1 j} b\left(f_{i}, e_{1}\right)+\cdots+a_{i i} b\left(f_{i}, e_{i}\right)=a_{i i}
$$

To compute $a_{i i}$, we use the Cramer's rule for solving systems of linear equations. The last unknown is equal to the ratio $\frac{\operatorname{det}\left(B_{i i}\right)}{\operatorname{det}\left(B_{i}\right)}$, where $B_{i i}$ is obtained by B_{i} by replacing the last column by the right hand side of the given system of equations. Expanding that determinant along the right column, we get $a_{i i}=\frac{\Delta_{i-1}}{\Delta_{i}}$ for $i>1$, and $a_{11}=\frac{1}{\Delta_{1}}$, as required.

