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Let B = (bij) be the matrix (relative to some basis e1, . . . , en) of a given symmetric bilinear form b on
V. We shall now discuss some methods of computing the signature of b via the matrix elements of B.

Theorem 1. The signature of B is completely determined by eigenvalues of B: the number n+ is the
number of positive eigenvalues, the number n− is the number of negative eigenvalues, and the number n0 is
the number of zero eigenvalues.

Proof. We know that b(x, y) = xTBy, which of course is equal to yTBx, since we work with symmetric
bilinear forms. Let us pick an orthonormal basis of eigenvectors of the matrix B (with respect to the usual
scalar product (x, y) = yTx) v1, . . . , vn. Then b(vi, vj) = v

T
j Bvi = v

T
j civi = ci(vi, vj), therefore, relative to

that basis, the matrix of B is diagonal with eigenvalues on the diagonal, and the theorem follows after we
normalise each basis vector: v ′i =

1√
|q(vi)

vi.

Let us denote by Bk the k× k-matrix whose entries are bij with 1 6 i, j 6 k, that is the top left corner
submatrix of B. We put ∆k := det(Bk) for 1 6 k 6 n.

Theorem 2 (Jacobi theorem). Suppose that for all i = 1, . . . , n we have ∆i 6= 0. Then there exists a basis
f1, . . . , fn where

q(x1f1 + · · ·+ xnfn) =
1

∆1
x21 +

∆1

∆2
x22 + · · ·+

∆n−1

∆n
x2n.

Proof. We shall look for a basis of the form

f1 = a11e1,

f2 = a12e1 + a22e2,

. . . ,

fn = a1ne1 + a2ne2 + · · ·+ annen.

If we write the conditions b(fi, fj) = 0 for i 6= j directly, we shall obtain a system of quadratic equations in
the unknowns aij, which is difficult to solve directly. For that reason, we shall use a clever shortcut.

Suppose that we found a basis of the form given above, for which

b(fi, ej) = 0 for j = 1, . . . , i− 1.

We shall now verify that these conditions imply b(fi, fj) = 0 for i 6= j. Indeed, for i > j we have

b(fi, fj) = b(fi, a1je1 + a2je2 + . . .+ ajjej) = a1jb(fi, e1) + · · ·+ ajjb(fi, ej) = 0,

and for i < j we have b(fi, fj) = b(fj, fi) = 0.
For a given i, the conditions

b(fi, ej) = 0 for j = 1, . . . , i− 1
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form a system of linear equations with i unknowns and i − 1 equations, so there will inevitably be free
unknowns. To normalise the solution, let us also include the equation

b(fi, ei) = 1.

Then the corresponding system of equation becomes

b(e1, e1)a1i + b(e2, e1)a2i + . . .+ b(ei, e1)aii = 0,

b(e1, e2)a1i + b(e2, e2)a2i + . . .+ b(ei, e2)aii = 0,

. . .

b(e1, ei−1)a1i + b(e2, ei−1)a2i + . . .+ b(ei, ei−1)aii = 0,

b(e1, ei)a1i + b(e2, ei)a2i + . . .+ b(ei, ei)aii = 1.

The matrix of the this system of equation is BTi = Bi, so by our assumption this system has just one solution
for each i = 1, . . . , n.

Let us compute the diagonal entries b(fi, fi). We have

b(fi, fj) = b(fi, a1je1 + a2je2 + . . .+ aiiei) = a1jb(fi, e1) + · · ·+ aiib(fi, ei) = aii.

To compute aii, we use the Cramer’s rule for solving systems of linear equations. The last unknown is equal

to the ratio det(Bii)
det(Bi)

, where Bii is obtained by Bi by replacing the last column by the right hand side of the

given system of equations. Expanding that determinant along the right column, we get aii =
∆i−1

∆i
for i > 1,

and a11 =
1
∆1

, as required.
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