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Example for the Jacobi theorem

Let us begin with an example for the Jacobi theorem from last class. Suppose that a bilinear form has the

matrix

 3 1 −1
1 1 −2
−1 −2 1

 relative to a basis e1, e2, e3.

Let us compute the determinants ∆1, ∆2, ∆3. We have ∆1 = 3, ∆2 = 2, ∆3 = −7. Therefore, the
conditions of the Jacobi theorem are satisfied.

We are looking for a basis of the form

f1 = α11e1,

f2 = α12e1 + α22e2,

f3 = α13e1 + α23e2 + α33e3,

imposing equations A(ei, fj) = 0 for i < j, and A(ei, fi) = 1 for all i. This means that

1 = A(e1, f1) = 3α11,

0 = A(e1, f2) = 3α12 + α22,

1 = A(e2, f2) = α12 + α22,

0 = A(e1, f3) = 3α13 + α23 − α33,

0 = A(e2, f3) = α13 + α23 − 2α33,

1 = A(e3, f3) = −α13 − 2α23 + α33.

Solving these linear equations, we get α11 = 1
3

, α12 = −1
2

, α22 = 3
2

, α13 = 1
7

, α23 = −5
7

, α33 = −2
7

, so the
corresponding change of basis is

f1 =
1

3
e1,

f2 = −
1

2
e1 +

3

2
e2,

f3 =
1

7
e1 −

5

7
e2 −

2

7
e3.

Sylvester’s criterion

Theorem 1 (Sylvester’s criterion). The given symmetric bilinear form is positive definite if and only if

∆k > 0 for all k = 1, . . . , n.
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Proof. Suppose that all ∆k are positive. Then in particular they are all non-zero, and we are in the situation
of Jacobi theorem, which immediately shows that b is positive definite, since q(v) = b(v, v) is represented
by a sum of squares of coordinates with positive coefficients.

Suppose that b is positive definite. Let us show that it is impossible to have ∆k = 0 for some k. Assume
the contrary. Then the homogeneous system of linear equations

b(e1, e1)x1 + b(e2, e1)x2 + . . .+ b(ek, e1)xk = 0,

b(e1, e2)x1 + b(e2, e2)x2 + . . .+ b(ek, e2)xk = 0,

. . .

b(e1, ek)x1 + b(e2, ek)x2 + . . .+ b(ek, ek)xk = 0

has a nontrivial solution. Let us take this solution, and consider the vector v = x1e1 + · · ·+ xkek. We have

b(v, ei) = b(e1, ei)x1 + b(e2, ei)x2 + . . .+ b(ek, ei)xk = 0 for i = 1, . . . , k.

Therefore,
b(v, v) = x1b(v, e1) + x2b(v, e2) + · · ·+ xkb(v, ek) = 0,

which contradicts the assumption that b is positive definite. Therefore, all the determinants ∆k are nonzero,
and then the previous theorem implies that they must be positive, or else the expansion

q(x1f1 + · · ·+ xnfn) =
1

∆1
x21 +

∆1

∆2
x22 + · · ·+

∆n−1

∆n
x2n

has a negative coefficient, and so b cannot be positive definite.

Hermitian vector spaces

We would like to adapt the results that we proved for the case of complex numbers. However, we started
with defining scalar products, and for complex numbers, the notion of a positive number does not make
sense. So we have to be a bit more imaginative.

Definition 1. A vector space V over complex numbers is said to be a Hermitian vector space if it is equipped
with a function (Hermitian scalar product) V ×V → C, v1, v2 7→ (v1, v2) satisfying the following conditions:

• sesquilinearity: (v1 + v2, v) = (v1, v) + (v2, v), (v, v1 + v2) = (v, v1) + (v, v2), (cv1, v2) = c(v1, v2), and
(v1, cv2) = c(v1, v2),

• symmetry: (v1, v2) = (v2, v1) for all v1, v2 (in particular, (v, v) ∈ R for all v),
• positivity: (v, v) > 0 for all v, and (v, v) = 0 only for v = 0.
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