1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 15

Let us discuss solutions to selected homework questions.

1. (HW1) For each of the following matrices A, viewed as a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3},

- compute the rank of A;
- describe all eigenvalues and eigenvectors of A;
- determine whether there exists a change of coordinates making the matrix A diagonal.
(a) $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right) ;$ (b) $A=\left(\begin{array}{ccc}2 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & -1 & 4\end{array}\right)$; (c) $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & 5 & 2\end{array}\right)$.

Solution: (a) $\operatorname{rk}(A)=1$ (all columns are the same, so there is just one linearly independent column), eigenvectors are 0 and 3, there are two linearly independent eigenvectors $\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$ for the first of them (and every eigenvector is their linear combination), and every eigenvector for the second of them is proportional to $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. Since there are three linearly independent eigenvectors, the matrix is similar to a diagonal matrix.
(b) $\operatorname{rk}(A)=3$, eigenvectors are 2 and 3 , every eigenvector for the first one is proportional to $\left(\begin{array}{c}-4 \\ -2 \\ 1\end{array}\right)$, every eigenvector for the second one is proportional to $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$. Since we do not have three linearly independent eigenvectors, the matrix is not similar to a diagonal matrix.
(c) $\operatorname{rk}(A)=3$, eigenvectors are $-2,1$, and 3 , every eigenvector for the first one is proportional to $\left(\begin{array}{c}1 / 4 \\ -1 / 2 \\ 1\end{array}\right)$, every eigenvector for the second one is proportional to $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, every eigenvector for the third one is proportional to $\left(\begin{array}{c}1 / 9 \\ 1 / 3 \\ 1\end{array}\right)$.
2. (HW4) For the subspace $U \in \mathbb{R}^{5}$ spanned by the vectors $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}1 \\ 0 \\ -1 \\ 0 \\ 1\end{array}\right)$, determine some basis for the subspace U^{\perp}. The scalar product on \mathbb{R}^{5} is the standard one $(v, w)=v_{1} w_{1}+\ldots+v_{5} w_{5}$.

Solution: The orthogonal complement of our subspace consists of all vectors which are orthogonal to both of the spanning vectors, that is vectors $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)$ for which $x_{1}+x_{2}+x_{3}+x_{4}=0$ and $x_{1}-x_{3}+x_{5}=0$. Solving this system, we observe that the variables x_{3}, x_{4}, x_{5} are free, and we get a parametrisation of the orthogonal complement: $\left(\begin{array}{c}u-w \\ w-2 u-v \\ u \\ v \\ w\end{array}\right)$, where $u, v, w \in \mathbb{R}$.
3. (HW5) Use the Sylvester's criterion to find all values of the parameter a for which the quadratic form $2 x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 a x_{1} x_{2}+2 x_{1} x_{3}+(2-2 a) x_{2} x_{3}$ on \mathbb{R}^{3} is positive definite.

Solution: The matrix of the corresponding bilinear form is

$$
A=\left(\begin{array}{ccc}
2 & a & 1 \\
a & 1 & 1-a \\
1 & 1-a & 1
\end{array}\right)
$$

We have $\Delta_{1}=2, \Delta_{2}=2-a^{2}, \Delta_{3}=-5 a^{2}+6 a-1$. All these numbers are positive if and only if $|a|<\sqrt{2}$ and $1 / 5<a<1$ (since the roots of $-5 a^{2}+6 a-1$ are $1 / 5$ and 1). In fact, the second condition implies the first one, so we get the answer $1 / 5<a<1$.
4. (HW6) Find an orthonormal basis of eigenvectors for the matrix

$$
A=\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

For the quadratic form $q(x)=(A x, x)$, compute the maximal and the minimal value of $q(x)$ on the unit sphere $S=\{x \mid(x, x)=1\}$.

Solution: Eigenvalues are 0, 1, and 3, so the corresponding eigenvectors are automatically orthogonal. Normalizing them (dividing by lengths), we get an orthonormal basis of eigenvectors

$$
\frac{1}{\sqrt{3}}\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

We have

$$
\max _{(x, x)=1} q(x)=3, \quad \min _{(x, x)=1} q(x)=0
$$

as these values are given by the max/min eigenvalue of our matrix. The minimum is reached on the first vector from the basis of eigenvectors, the maximum - on the third vector.

