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Example 1. Let V = Cn with the standard scalar product

(


x1
x2
...
xn

 ,


y1

y2

...
yn

) = x1y1 + x2y2 + · · ·+ xnyn.

All the three properties from the definition of a Hermitian space are trivially true.

Lemma 1. For every Hermitian scalar product and every basis e1, . . . , en of V, we have

(x1e1 + . . .+ xnen, y1e1 + . . .+ ynen) =

n∑
i,j=1

aijxiyj,

where aij = (ei, ej).

This follows immediately from the sesquilinearity property of Hermitian scalar products.
Similarly to how one defines orthogonal and orthonormal systems in Euclidean spaces, we say that a

system of vectors e1, . . . , ek of a Hermitian space V is orthogonal, if it consists of nonzero vectors, which are
pairwise orthogonal: (ei, ej) = 0 for i 6= j. An orthogonal system is said to be orthonormal, if (ei, ei) = 1
for all i. There is an obvious version of Gram–Schmidt orthogonalisation procedure for Hermitian scalar
products; it ensures that every Hermitian vector space has an orthonormal basis.

Note that a basis e1, . . . , en of V is orthonormal if and only if

(x1e1 + . . .+ xnen, y1e1 + . . .+ ynen) = x1y1 + . . .+ xnyn.

Definition 1. Let ϕ be a linear transformation of a Hermitian vector space V. The adjoint linear transfor-
mation ϕ† is uniquely determined by the formula

(ϕv1, v2) = (v1, ϕ
†v2)

that should be valid for all v1 and v2. (Indeed, substituting elements from an orthonormal basis for v1
recovers all coordinates of ϕ†v2).

Remark 1. Note that (ϕ†)† = ϕ. Indeed, we have

(v1, (ϕ
†)†(v2)) = (ϕ†(v1), v2) = (v2, ϕ†(v1)) = (ϕ(v2), v1) = (v1, ϕ(v2)),

from which it follows that
(ϕ†)†(v2) = ϕ(v2),

and it implies
(ϕ†)† = ϕ.
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Proposition 1. Let e1, . . . , en be an orthonormal basis of a Hermitian vector space V, and let the linear
transformation ϕ be represented by a matrix B relative to this basis. Then the linear transformation ϕ† is
represented by the matrix BT .

Definition 2. A linear transformation ϕ of a Hermitian vector space is said to be symmetric if
(ϕ(v1), v2) = (v1, ϕ(v2)) for all v1, v2, in other words, if ϕ† = ϕ. A linear transformation is said to
be unitary, if (ϕ(v1), ϕ(v2)) = (v1, v2), in other words, if ϕ† = ϕ−1. A linear transformation ϕ is said to
be normal if ϕϕ† = ϕ†ϕ.

Theorem 1. A normal linear transformation admits an orthonormal basis of eigenvectors.

Proof. We know that two commuting linear transformations have a common eigenvector, so there exists a
vector v for which ϕ(v) = cv, and ϕ†(v) = c ′v. We note that

c(v, v) = (cv, v) = (ϕ(v), v) = (v,ϕ†(v)) = (v, c ′v) = c ′(v, v),

so c = c ′, although this will not be crucial for us. What is crucial is that for Hermitian scalar products
one can define orthogonal complements etc., and it is easy to see that the orthogonal complement of v is an
invariant subspace of both ϕ and ϕ†: if w ∈ span(v)⊥, then

(ϕ(w), v) = (w,ϕ†(v)) = (w, c ′v) = c ′(w, v) = 0,

(ϕ†(w), v) = (w, (ϕ†)†(v)) = (w,ϕ(v)) = (w, cv) = c(w, v) = 0.

This allows us to proceed by induction on dimension of V: we found an eigenvector, and by the induction
hypothesis we have a basis of eigenvectors in the orthogonal complement of that eigenvector.

Theorem 2. Eigenvalues of a symmetric linear transformation are real. Every Hermitian linear transfor-
mation admits a orthonormal basis of eigenvectors.

Proof. Let v be an eigenvector of the given Hermitian linear transformation ϕ. Then the eigenvalues of ϕ
are, as we proved earlier, self-conjugate, and therefore real. The rest follows from the fact that a symmetric
linear transformation is normal.

Remark 2. This theorem can be used to deduce the theorem on symmetric matrices we proved before, but
the proof will invoke complex numbers. The proof we discussed before is a bit more consistent with the
context of that theorem.
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