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Lecture 17

For the rest of the semester, we shall focus on general theory of linear transformations in complex vector
spaces. The main question we shall address is how to find a system of coordinates where the matrix of the
given linear transformation ϕ has a particularly simple shape (for example, for purposes of computing ϕk,
but for other purposes too). Before we deal with this problem in full generality, let us consider two examples
which show various subtleties of our problem.

Case ϕ2 = ϕ

In this section we are dealing with a special case of linear transformations, those satisfying ϕ2 = ϕ.

Lemma 1. If ϕ2 = ϕ, then Im(ϕ) ∩ ker(ϕ) = {0}.

Proof. Indeed, if v ∈ Im(ϕ)∩ker(ϕ), then v = ϕ(w) for some w, and 0 = ϕ(w) = ϕ(ϕ(w)) = ϕ2(w) = ϕ(w) = v.

Not that from this proof it is clear that if v ∈ Im(ϕ), then ϕ(v) = v.

Lemma 2. If ϕ2 = ϕ, then V = Im(ϕ)⊕ ker(ϕ).

Proof. Indeed,

dim(Im(ϕ) + ker(ϕ)) = dim Im(ϕ+ dim ker(ϕ) − dim(Im(ϕ) ∩ ker(ϕ)) = rk(ϕ) + null(ϕ) = dim(V),

so the sum is a subspace of V of dimension equal to the dimension of V, that is V itself. Also, we already
checked that the intersection is equal to 0, so the sum is direct.

Consequently, if we take a basis of ker(ϕ), and a basis of Im(ϕ), and join them together, we get a basis

of V relative to which the matrix of ϕ is

(
0 0
0 I

)
.

Case ϕ2 = 0

However nice the approach from the previous section seems, sometimes it does not work that well. Though
we always have

dim Im(ϕ) + dim ker(ϕ) = dim(V),

the sum of these subspaces is not always direct, as the following example shows. If we know that ϕ2 = 0,
that is ϕ(ϕ(v)) = 0 for every v ∈ V, that implies Im(ϕ) ⊂ ker(ϕ), so Im(ϕ) + ker(ϕ) = ker(ϕ). Let us
discuss a way to handle this case, it will be very informative for our future results. We begin with a general
definition which will be useful for packaging various constructions we shall use.

Definition 1. Let U be a subspace of V.

• We say that vectors e1, . . . , ek are linearly independent relative to U if c1e1 + · · · + ckek ∈ U implies
c1 = · · · = ck = 0.
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• We say that vectors e1, . . . , ek form a spanning set relative to U if span(e1, . . . , ek) +U = V.
• We say that vectors e1, . . . , ek form a basis relative to U if they are linearly independent relative to
U and form a spanning set relative to U. Alternatively, we can say that the sum of the subspaces
span(e1, . . . , ek) and U is direct and is equal to V.

Note that the usual notion of a linearly independent set, a spanning set, and a basis are obtained in the
case U = {0}.

Now, let us pick a basis e1, . . . , ek of V relative to ker(ϕ). Note that ϕ(e1), . . . , ϕ(ek) ∈ Im(ϕ) ⊂ ker(ϕ).
Let us pick a basis f1, . . . , fl of ker(ϕ) relative to span(ϕ(e1), . . . , ϕ(ek)). Let us show that the vectors

e1, . . . , ek, ϕ(e1), . . . , ϕ(ek), f1, . . . , fl

are linearly independent (and hence form a basis of V). Suppose that

a1e1 + · · ·+ akek + b1ϕ(e1) + · · ·+ bkϕ(ek) + c1f1 + · · ·+ clfl = 0,

so that
a1e1 + · · ·+ akek = −b1ϕ(e1) − · · ·− bkϕ(ek) − c1f1 − · · ·− clfl.

The right hand side belongs to ker(ϕ), so since e1, . . . , ek is a relative basis, we conclude that a1, . . . , ak are
all equal to zero. Therefore,

b1ϕ(e1) + · · ·+ bkϕ(ek) + c1f1 + · · ·+ clfl = 0,

so since f1, . . . , fl is a relative basis, we conclude that c1, . . . , cl are all equal to zero. Therefore,

ϕ(b1e1 + · · ·+ bkek) = b1ϕ(e1) + · · ·+ bkϕ(ek) = 0,

so b1e1 + · · ·+ bkek ∈ ker(ϕ), and hence b1, . . . , bk are all equal to zero.
Reordering this basis, we obtain a basis

e1, ϕ(e1), . . . , ek, ϕ(ek), f1, . . . , fl,

relative to which the matrix of ϕ has a block diagonal form with k blocks

(
0 0
1 0

)
on the diagonal, and all

the other entries equal to zero.
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