1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 18

Computing relative bases

Let us begin with a general remark on relative bases.
To compute a basis of \mathbb{R}^{n} relative to the linear span of several vectors, one may compute the reduced column echelon form for the matrix made of those vectors, and pick, for a relative basis, those standard unit vectors corresponding to "missing leading 1's", that is to the non-principal rows of the reduced column echelon form.

More generally, if we are required to determine a basis of a vector space V relative to its subspace U, we can proceed as follows. Let A be a matrix whose columns form a basis of $U, B-a$ matrix whose columns form a basis of V. We can find the reduced column echelon form R for A. Write R next to B, and use it to "reduce" B, making sure that all rows that contain pivots of R do not contain any other nonzero elements. Then it remains to find the reduced column echelon form of the matrix B^{\prime} that replaces the matrix B. Its nonzero columns form a relative basis.
Example 1. Assume that we want to find a basis of \mathbb{R}^{4} relative to the linear span of the vectors $u_{1}=\left(\begin{array}{c}-2 \\ 1 \\ 1 \\ 0\end{array}\right)$ and $u_{2}=\left(\begin{array}{c}-2 \\ 1 \\ 0 \\ 1\end{array}\right)$. The reduced column echelon form of the matrix whose columns are these vectors is $\left(\begin{array}{cc}1 & 0 \\ -\frac{1}{2} & 0 \\ 0 & 1 \\ -\frac{1}{2} & -1\end{array}\right)$, so the missing pivots correspond to the second and the fourth row, and the vectors $\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$ form a relative basis.
Example 2. Furthermore, assume that we want to find a basis of the linear span of the vectors $e_{1}=\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right)$, $e_{2}=\left(\begin{array}{c}1 \\ 0 \\ -1 \\ 0\end{array}\right), e_{3}=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right)$ relative to the linear span of the vectors $f_{1}=\left(\begin{array}{c}-2 \\ 1 \\ 1 \\ 0\end{array}\right)$ and $f_{2}=\left(\begin{array}{c}-2 \\ 1 \\ 0 \\ 1\end{array}\right)$ (note that $\operatorname{span}\left(f_{1}, f_{2}\right)$ is a subspace of $\operatorname{span}\left(e_{1}, e_{2}, e_{3}\right)$ because $\left.f_{1}=-e_{1}-e_{2}, f_{2}=-e_{1}-e_{3}\right)$. The reduced column eche-
lon form of the matrix whose columns are f_{1} and f_{2} is the matrix $\left(\begin{array}{cc}1 & 0 \\ -\frac{1}{2} & 0 \\ 0 & 1 \\ -\frac{1}{2} & -1\end{array}\right)$ we computed in the previous example. Now we adjoin the columns equal to e_{1}, e_{2}, and e_{3}, obtaining the matrix $\left(\begin{array}{ccccc}1 & 0 & 1 & 1 & 1 \\ -\frac{1}{2} & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ -\frac{1}{2} & -1 & 0 & 0 & -1\end{array}\right)$. Reducing its three last columns using the first two columns gives the matrix $\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & 0 & 0 \\ -\frac{1}{2} & -1 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2}\end{array}\right)$. Removing the part corresponding to the $\operatorname{span}\left(u_{1}, u_{2}\right)$ leaves us with the matrix $\left(\begin{array}{ccc}0 & 0 & 0 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2}\end{array}\right)$ whose reduced column echelon form is $\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right)$, so the vector $\left(\begin{array}{c}0 \\ 1 \\ 0 \\ -1\end{array}\right)$ forms a relative basis.

Example for $\varphi^{2}=0$

Example 3. Consider the case $\mathrm{V}=\mathbb{R}^{3}, \varphi$ is multiplication by the matrix $A=\left(\begin{array}{ccc}-3 & 1 & -1 \\ -12 & 4 & -4 \\ -3 & 1 & -1\end{array}\right)$. We have $A^{2}=0$, so $\varphi^{2}=0$, falling into the case we discussed in previous lecture.

We have a sequence of subspaces $V=\operatorname{Ker} \varphi^{2} \supset \operatorname{Ker} \varphi \supset\{0\}$. The first one relative to the second one is one-dimensional (since $\operatorname{dim} \operatorname{Ker} \varphi^{2}-\operatorname{dim} \operatorname{Ker} \varphi=1$). The kernel of φ has a basis consisting of the vectors $\left(\begin{array}{c}1 / 3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-1 / 3 \\ 0 \\ 1\end{array}\right)$ (corresponding to the choices $s=1, t=0$ and $s=0, t=1$ respectively). The reduced column echelon form of the corresponding matrix $A=\left(\begin{array}{cc}1 / 3 & -1 / 3 \\ 1 & 0 \\ 0 & 1\end{array}\right)$ is the matrix $R=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ -3 & 1\end{array}\right)$, so the missing pivot is in the third row, and we obtain a relative basis consisting of the vector $f=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. This vector gives rise to vector $\varphi(f)=\left(\begin{array}{l}-1 \\ -4 \\ -1\end{array}\right)$. It remains to find a basis of $\operatorname{Ker} \varphi$ relative to the span of $\varphi(f)$. Column reduction of the basis vectors of $\operatorname{Ker}(\varphi)$ by $\varphi(f)$ leaves us with the vector $g=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$. Overall, $f, \varphi(f), g$ form a basis of V. The matrix of φ relative to this basis is $A=\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.

