
1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 19

Suppose that ϕ is a linear transformation of a vector space V for which ϕk = 0 (such operators are called
nilpotent). We shall adapt the argument that we had for k = 2 to this general case.

Let us put, for each p, Np = ker(ϕp). Let us assume that k is actually the smallest power of ϕ that
vanishes, so that ϕk−1 6= 0. Of course, we have Nk = Nk+1 = Nk+2 = . . . = V.

We shall now construct a basis of V of a very particular form. It will be constructed in k steps. First,
we find a basis of V = Nk relative to Nk−1. Let e1, . . . , es be vectors of this basis.

The following result is proved in the same way as last week:

Lemma 1. The vectors e1, . . . , es, ϕ(e1), . . . , ϕ(es) are linearly independent relative to Nk−2.

Proof. Indeed, assume that

c1e1 + . . .+ cses + d1ϕ(e1) + . . .+ dsϕ(es) ∈ Nk−2.

Since ei ∈ Nk, we have ϕ(ei) ∈ Nk−1, so

c1e1 + . . .+ cses ∈ −d1ϕ(e1) − . . .− dsϕ(es) +Nk−2 ⊂ Nk−1,

which means that c1 = . . . = cs = 0. Thus,

ϕ(d1e1 + . . .+ dses) = d1ϕ(e1) + . . .+ dsϕ(es) ∈ Nk−2,

so d1e1 + . . .+ dses ∈ Nk−1, and we deduce that d1 = . . . = ds = 0, thus the lemma follows.

Now we find vectors f1, . . . , ft which form a basis of Nk−1 relative to span(ϕ(e1), . . . , ϕ(es)) ⊕Nk−2.
Absolutely analogously one can prove

Lemma 2. The vectors e1, . . . , es, ϕ(e1), . . . , ϕ(es), ϕ
2(e1), . . . , ϕ

2(es), f1, . . . , ft, ϕ(f1), . . . , ϕ(ft)
are linearly independent relative to Nk−3.

We continue that extension process until we end up with a basis of V of the following form:

e1, . . . , es, ϕ(e1), . . . , ϕ(es), ϕ
2(e1), . . . , ϕ

k−1(e1), . . . , ϕ
k−1(es),

f1, . . . , ft, ϕ(f1), . . . , ϕ
k−2(f1), . . . , ϕ

k−2(ft),

. . . ,

g1, . . . , gu,

where the first line contains several “threads” ei, ϕ(ei), . . . , ϕ
k−1(ei) of length k, the second line — several

threads of length k− 1, . . . , the last line — several threads of length 1, that is several vectors from N1.
Let us rearrange the basis vectors so that vectors forming a thread are all next to each other:

e1, ϕ(e1), . . . , ϕ
k−1(e1), . . . , es, ϕ(es), . . . , ϕ

k−1(es),

f1, ϕ(f1), . . . , ϕ
k−2(f1), . . . , ft, ϕ(ft), . . . , ϕ

k−2(ft),

. . . ,

g1, . . . , gu.
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Relative to that basis, the linear transformation ϕ has the matrix made of Jordan blocks

Jl =



0 0 0 0 . . . 0 0
1 0 0 0 . . . 0 0
0 1 0 0 . . . 0 0
...

...
...

. . .
. . .

...
...

...
...

...
...

. . . 0 0
0 0 0 0 . . . 0 0
0 0 0 0 . . . 1 0


,

one block Jl for each thread of length l.

Example 1. V = R3, ϕ is multiplication by the matrix A =

21 −7 8
60 −20 23
−3 1 −1

. In this case, ϕ2 is mul-

tiplication by the matrix

−3 1 −1
−9 3 −3
0 0 0

, ϕ3 = 0, rkϕ = 2, rkϕ2 = 1, rkϕk = 0 for k > 3, null(ϕ) = 1,

null(ϕ2) = 2, null(ϕk) = 3 for k > 3. We have a sequence of subspaces V = Kerϕ3 ⊃ Kerϕ2 ⊃ Kerϕ ⊃ {0}.
The first one relative to the second one is one-dimensional (dim Kerϕ3 − dim Kerϕ2 = 1). We have

Ker(ϕ2) = {

s−t
3

s
t

, so it has a basis of the vectors

1/3
1
0

 and

−1/3
0
1

 (corresponding to the choices

s = 1, t = 0 and s = 0, t = 1 respectively), and after computing the reduced column echelon form and looking

for missing pivots, we obtain a relative basis consisting of the vector f =

0
0
1

. This vector gives rise to the

thread f, ϕ(f) =

 8
23
−1

, ϕ2(f) =

−1
−3
0

. Since our space is 3-dimensional, this thread forms a basis.

Example 2. V = R4, ϕ is multiplication by the matrix A =


1 0 0 1
0 −1 1 0
0 −1 1 0
−1 0 0 −1

. In this case, ϕ2 = 0,

rk(ϕ) = 2, rk(ϕk) = 0 for k > 2, null(ϕ) = 2, null(ϕk) = 4 for k > 2. Moreover, Ker(ϕ) = {


−s
t
t
s

}.

We have a sequence of subspaces V = Ker(ϕ2) ⊃ Ker(ϕ) ⊃ {0}. The first one relative to the second one is

two-dimensional (dim Ker(ϕ2) − dim Ker(ϕ) = 2). Clearly, the vectors


−1
0
0
1

 and


0
1
1
0

 (corresponding to

s = 1, t = 0 and s = 0, t = 1 respectively) form a basis of the kernel of ϕ, and after computing the reduced
column echelon form and looking for missing pivots, we obtain a relative basis consisting of the vectors

f1 =


0
0
1
0

 and f2 =


0
0
0
1

. These vectors give rise to threads f1, ϕ(f1) =


0
1
1
0

 and f2, ϕ(f2) =


1
0
0
−1

.

These two threads together contain four vectors, and we have a basis.
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