1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 19

Suppose that φ is a linear transformation of a vector space V for which $\varphi^{k}=0$ (such operators are called nilpotent). We shall adapt the argument that we had for $k=2$ to this general case.

Let us put, for each $p, N_{p}=\operatorname{ker}\left(\varphi^{p}\right)$. Let us assume that k is actually the smallest power of φ that vanishes, so that $\varphi^{k-1} \neq 0$. Of course, we have $\mathrm{N}_{\mathrm{k}}=\mathrm{N}_{\mathrm{k}+1}=\mathrm{N}_{\mathrm{k}+2}=\ldots=\mathrm{V}$.

We shall now construct a basis of V of a very particular form. It will be constructed in k steps. First, we find a basis of $V=N_{k}$ relative to N_{k-1}. Let e_{1}, \ldots, e_{s} be vectors of this basis.

The following result is proved in the same way as last week:
Lemma 1. The vectors $e_{1}, \ldots, e_{s}, \varphi\left(e_{1}\right), \ldots, \varphi\left(e_{s}\right)$ are linearly independent relative to $\mathrm{N}_{\mathrm{k}-2}$.
Proof. Indeed, assume that

$$
c_{1} e_{1}+\ldots+c_{s} e_{s}+d_{1} \varphi\left(e_{1}\right)+\ldots+d_{s} \varphi\left(e_{s}\right) \in \mathrm{N}_{\mathrm{k}-2}
$$

Since $e_{i} \in N_{k}$, we have $\varphi\left(e_{i}\right) \in N_{k-1}$, so

$$
c_{1} e_{1}+\ldots+c_{s} e_{s} \in-d_{1} \varphi\left(e_{1}\right)-\ldots-d_{s} \varphi\left(e_{s}\right)+N_{k-2} \subset N_{k-1}
$$

which means that $c_{1}=\ldots=c_{s}=0$. Thus,

$$
\varphi\left(d_{1} e_{1}+\ldots+d_{s} e_{s}\right)=d_{1} \varphi\left(e_{1}\right)+\ldots+d_{s} \varphi\left(e_{s}\right) \in \mathrm{N}_{\mathrm{k}-2}
$$

so $d_{1} e_{1}+\ldots+d_{s} e_{s} \in N_{k-1}$, and we deduce that $d_{1}=\ldots=d_{s}=0$, thus the lemma follows.
Now we find vectors f_{1}, \ldots, f_{t} which form a basis of N_{k-1} relative to $\operatorname{span}\left(\varphi\left(e_{1}\right), \ldots, \varphi\left(e_{s}\right)\right) \oplus N_{k-2}$. Absolutely analogously one can prove
Lemma 2. The vectors $e_{1}, \ldots, e_{s}, \varphi\left(e_{1}\right), \ldots, \varphi\left(e_{s}\right), \varphi^{2}\left(e_{1}\right), \ldots, \varphi^{2}\left(e_{s}\right), f_{1}, \ldots, f_{t}, \varphi\left(f_{1}\right), \ldots, \varphi\left(f_{t}\right)$ are linearly independent relative to $\mathrm{N}_{\mathrm{k}-3}$.

We continue that extension process until we end up with a basis of V of the following form:

$$
\begin{gathered}
e_{1}, \ldots, e_{s}, \varphi\left(e_{1}\right), \ldots, \varphi\left(e_{s}\right), \varphi^{2}\left(e_{1}\right), \ldots, \varphi^{k-1}\left(e_{1}\right), \ldots, \varphi^{k-1}\left(e_{s}\right) \\
f_{1}, \ldots, f_{t}, \varphi\left(f_{1}\right), \ldots, \varphi^{k-2}\left(f_{1}\right), \ldots, \varphi^{k-2}\left(f_{t}\right) \\
\ldots, \\
g_{1}, \ldots, g_{u}
\end{gathered}
$$

where the first line contains several "threads" $e_{i}, \varphi\left(e_{i}\right), \ldots, \varphi^{k-1}\left(e_{i}\right)$ of length k, the second line - several threads of length $k-1, \ldots$, the last line - several threads of length 1 , that is several vectors from N_{1}.

Let us rearrange the basis vectors so that vectors forming a thread are all next to each other:

$$
\begin{gathered}
e_{1}, \varphi\left(e_{1}\right), \ldots, \varphi^{k-1}\left(e_{1}\right), \ldots, e_{s}, \varphi\left(e_{s}\right), \ldots, \varphi^{k-1}\left(e_{s}\right) \\
f_{1}, \varphi\left(f_{1}\right), \ldots, \varphi^{k-2}\left(f_{1}\right), \ldots, f_{t}, \varphi\left(f_{t}\right), \ldots, \varphi^{k-2}\left(f_{t}\right) \\
\ldots, \\
g_{1}, \ldots, g_{u}
\end{gathered}
$$

Relative to that basis, the linear transformation φ has the matrix made of Jordan blocks

$$
\mathrm{J}_{\imath}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

one block J_{\imath} for each thread of length l.
Example 1. $V=\mathbb{R}^{3}, \varphi$ is multiplication by the matrix $A=\left(\begin{array}{ccc}21 & -7 & 8 \\ 60 & -20 & 23 \\ -3 & 1 & -1\end{array}\right)$. In this case, φ^{2} is multiplication by the matrix $\left(\begin{array}{ccc}-3 & 1 & -1 \\ -9 & 3 & -3 \\ 0 & 0 & 0\end{array}\right), \varphi^{3}=0, \operatorname{rk} \varphi=2, \operatorname{rk} \varphi^{2}=1, \operatorname{rk} \varphi^{\mathrm{k}}=0$ for $k \geqslant 3, \operatorname{null}(\varphi)=1$, $\operatorname{null}\left(\varphi^{2}\right)=2, \operatorname{null}\left(\varphi^{k}\right)=3$ for $k \geqslant 3$. We have a sequence of subspaces $V=\operatorname{Ker} \varphi^{3} \supset \operatorname{Ker} \varphi^{2} \supset \operatorname{Ker} \varphi \supset\{0\}$. The first one relative to the second one is one-dimensional ($\operatorname{dim} \operatorname{Ker} \varphi^{3}-\operatorname{dim} \operatorname{Ker} \varphi^{2}=1$). We have $\operatorname{Ker}\left(\varphi^{2}\right)=\left\{\left(\begin{array}{c}\frac{s-t}{3} \\ s \\ t\end{array}\right)\right.$, so it has a basis of the vectors $\left(\begin{array}{c}1 / 3 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-1 / 3 \\ 0 \\ 1\end{array}\right)$ (corresponding to the choices $s=1, t=0$ and $s=0, t=1$ respectively), and after computing the reduced column echelon form and looking for missing pivots, we obtain a relative basis consisting of the vector $f=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. This vector gives rise to the thread $f, \varphi(f)=\left(\begin{array}{c}8 \\ 23 \\ -1\end{array}\right), \varphi^{2}(f)=\left(\begin{array}{c}-1 \\ -3 \\ 0\end{array}\right)$. Since our space is 3-dimensional, this thread forms a basis.
Example 2. $V=\mathbb{R}^{4}, \varphi$ is multiplication by the matrix $A=\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & -1\end{array}\right)$. In this case, $\varphi^{2}=0$, $\operatorname{rk}(\varphi)=2, \operatorname{rk}\left(\varphi^{\mathrm{k}}\right)=0$ for $\mathrm{k} \geqslant 2, \operatorname{null}(\varphi)=2, \operatorname{null}\left(\varphi^{\mathrm{k}}\right)=4$ for $\mathrm{k} \geqslant 2$. Moreover, $\operatorname{Ker}(\varphi)=\left\{\left(\begin{array}{c}-\mathrm{s} \\ \mathrm{t} \\ \mathrm{t} \\ \mathrm{s}\end{array}\right)\right\}$.
We have a sequence of subspaces $V=\operatorname{Ker}\left(\varphi^{2}\right) \supset \operatorname{Ker}(\varphi) \supset\{0\}$. The first one relative to the second one is two-dimensional $\left(\operatorname{dim} \operatorname{Ker}\left(\varphi^{2}\right)-\operatorname{dim} \operatorname{Ker}(\varphi)=2\right)$. Clearly, the vectors $\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$ (corresponding to $s=1, t=0$ and $s=0, t=1$ respectively) form a basis of the kernel of φ, and after computing the reduced column echelon form and looking for missing pivots, we obtain a relative basis consisting of the vectors $f_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$ and $f_{2}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$. These vectors give rise to threads $f_{1}, \varphi\left(f_{1}\right)=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$ and $f_{2}, \varphi\left(f_{2}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right)$.
These two threads together contain four vectors, and we have a basis.

