1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)
Lecture 19
Suppose that @ is a linear transformation of a vector space V for which @* = 0 (such operators are called

nilpotent). We shall adapt the argument that we had for k = 2 to this general case.
Let us put, for each p, N, = ker(@P). Let us assume that k is actually the smallest power of ¢ that

vanishes, so that @~ # 0. Of course, we have Ny =Ny 1 =Ny =...=V.
We shall now construct a basis of V of a very particular form. It will be constructed in k steps. First,
we find a basis of V = Ny relative to Nx_1. Let ey, ..., es be vectors of this basis.

The following result is proved in the same way as last week:
Lemma 1. The vectorseq, ..., es, ©(e1), ..., @(es) are linearly independent relative to Ny_».
Proof. Indeed, assume that
cie1+...+cses +dioler)+...+dsp(es) € Ny_o.
Since e; € Ny, we have ¢@(e;) € Ny_1, so
cier+...+cses € —dio(er) —...—dsoles) + N2 C Ny_q,
which means that ¢y = ... =cs = 0. Thus,
e(dier +...+dses) =dip(er) +... +dsp(es) € N2,
so die; +...+ dses € Nx_1, and we deduce that d; = ... = ds = 0, thus the lemma follows. O

Now we find vectors fy, ..., fy which form a basis of Ny_7 relative to span(¢@(ej),...,¢@(es)) ® Ny_2.
Absolutely analogously one can prove

Lemma 2. The vectors €, ..., €s, (p(e1)7 R (p(es); (pz(e1)7 ) @2(68)7 f17 ) ft) (p(f]); ] (p(ft)
are linearly independent relative to Ny _3.

We continue that extension process until we end up with a basis of V of the following form:

e])-'-)eS)(p(e1)a‘“)(p(es))(pz(el))'-'a(pk71(el)»'--a(pk71(es))

fry.o, fy, (p(f1 )) . -)(pkiz(ﬁ )a L) (Pkiz(ft))

. ey

g1y« -+5 Gu,
where the first line contains several “threads” ei, @(ei),..., @< '(ei) of length k, the second line — several
threads of length k — 1, ... the last line — several threads of length 1, that is several vectors from Nj.

Let us rearrange the basis vectors so that vectors forming a thread are all next to each other:

en,oler),..., (pk71 (e1)y...,es,0(es)y...,y (Pkil (es),

fla (P(f] )a .. w(pkiz(fl )) .. -)fh (p(ft)w . 'a(pkiz(ft)»

ey



Relative to that basis, the linear transformation ¢ has the matrix made of Jordan blocks

000 O 0 0
1.0 0 O 0 0
010 O 0 0
n=lio o
e 0 0
0 00 O 0 0
0 00 O 10
one block J; for each thread of length 1.
21 -7 8
Example 1. V = R3, ¢ is multiplication by the matrix A = [ 60 —20 23 |. In this case, @? is mul-
-3 1 -1
-3 1 -1
tiplication by the matrix | =9 3 3|, @3> =0, 1k =2, tk? =1, rk@* =0 for k > 3, null(@) =1,
0 0 0
null(@?) = 2, null(@¥) = 3 for k > 3. We have a sequence of subspaces V = Ker @3 O Ker ¢? D Ker ¢ D {0}
The first one relative to the second one is one-dimensional (dimKer @3 — dimKer ¢? = 1). We have
=t 1/3 -1/3
Ker(@?) = {| s |, so it has a basis of the vectors 1 and 0 (corresponding to the choices
t 0 1
s=1,t=0and s =0,t =1 respectively), and after computing the reduced column echelon form and looking
0
for missing pivots, we obtain a relative basis consisting of the vector f = | 0 |. This vector gives rise to the
1
8 —1
thread f, @(f) = [ 23 |, @?(f) = [ =3 | . Since our space is 3-dimensional, this thread forms a basis.
—1 0
1 0 0 1
4 . e . o -1 1 0 . P
Example 2. V = R"*, ¢ is multiplication by the matrix A = o -1 1 ol In this case, @< = 0,
-1 0 0 -1
—s
k(@) = 2, tk(@*) = 0 for k > 2, null(p) = 2, null(@*) = 4 for k > 2. Moreover, Ker(p) = { i }

s
We have a sequence of subspaces V = Ker(@?) D Ker(¢) D {0}. The first one relative to the second one is
—1 0
two-dimensional (dim Ker(@?) — dim Ker(¢) = 2). Clearly, the vectors 8 and } (corresponding to
1 0
s=1,t =0 and s = 0,t = 1 respectively) form a basis of the kernel of ¢, and after computing the reduced
column echelon form and looking for missing pivots, we obtain a relative basis consisting of the vectors

0 0 0 1
0 0 o 1 0
f1 = 1 and f, = ol These vectors give rise to threads fy, @(f1) = 1 and fa, @(f2) = 0
0 1 0 —1

These two threads together contain four vectors, and we have a basis.



