1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 20

One further example

Example 1. $V=\mathbb{R}^{4}, \varphi$ is multiplication by the matrix $A=\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & -1\end{array}\right)$. In this case, $\varphi^{2}=0$, $\operatorname{rk}(\varphi)=2, \operatorname{rk}\left(\varphi^{k}\right)=0$ for $k \geqslant 2, \operatorname{null}(\varphi)=2, \operatorname{null}\left(\varphi^{k}\right)=4$ for $k \geqslant 2$. Moreover, $\operatorname{Ker}(\varphi)=\left\{\left(\begin{array}{c}-s \\ \mathrm{t} \\ \mathrm{t} \\ \mathrm{s}\end{array}\right)\right\}$. We have a sequence of subspaces $\mathrm{V}=\operatorname{Ker}\left(\varphi^{2}\right) \supset \operatorname{Ker}(\varphi) \supset\{0\}$. The first one relative to the second one is two-dimensional $\left(\operatorname{dim} \operatorname{Ker}\left(\varphi^{2}\right)-\operatorname{dim} \operatorname{Ker}(\varphi)=2\right)$. Clearly, the vectors $\left(\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$ (corresponding to $s=1, t=0$ and $s=0, t=1$ respectively) form a basis of the kernel of φ, and after computing the reduced column echelon form and looking for missing pivots, we obtain a relative basis consisting of the vectors $f_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$ and $f_{2}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$. These vectors give rise to threads $f_{1}, \varphi\left(f_{1}\right)=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$ and $f_{2}, \varphi\left(f_{2}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right)$.
These two threads together contain four vectors, and we have a basis.

Uniqueness of the normal form

Let us denote by m_{d} the number of threads of length d, where $1 \leqslant d \leqslant k$. In that case, we have

$$
\begin{aligned}
m_{k} & =\operatorname{dim} N_{k}-\operatorname{dim} N_{k-1} \\
m_{k-1}+m_{k} & =\operatorname{dim} N_{k-1}-\operatorname{dim} N_{k-2} \\
\ldots & \\
m_{2}+\ldots+m_{k} & =\operatorname{dim} N_{2}-\operatorname{dim} N_{1} \\
m_{1}+m_{2}+\ldots+m_{k} & =\operatorname{dim} N_{1}
\end{aligned}
$$

so the numbers of threads of various lengths are uniquely determined by the characteristics of the linear transformation φ that do not depend on any choices (dimensions of kernels of powers).

Finding a direct sum decomposition

Now, suppose that φ is an arbitrary linear transformation of V. Consider the sequence of subspaces
$\mathrm{N}_{1}=\operatorname{ker}(\varphi), \mathrm{N}_{2}=\operatorname{ker}\left(\varphi^{2}\right), \ldots, \mathrm{N}_{\mathrm{m}}=\operatorname{ker}\left(\varphi^{\mathrm{m}}\right), \ldots$.
Note that this sequence is increasing:

$$
N_{1} \subset N_{2} \subset \ldots N_{m} \subset \ldots
$$

Indeed, if $v \in \mathrm{~N}_{s}$, that is $\varphi^{s}(v)=0$, then we have

$$
\varphi^{s+1}(v)=\varphi\left(\varphi^{s}(v)\right)=0 .
$$

Since we only work with finite-dimensional vector spaces, this sequence of subspaces cannot be strictly increasing; if $N_{i} \neq N_{i+1}$, then, obviously, $\operatorname{dim} N_{i+1} \geqslant 1+\operatorname{dim} N_{i}$. It follows that for some k we have $\mathrm{N}_{\mathrm{k}}=\mathrm{N}_{\mathrm{k}+1}$.
Lemma 1. In this case we have $\mathrm{N}_{\mathrm{k}+\mathrm{l}}=\mathrm{N}_{\mathrm{k}}$ for all $\mathrm{l}>0$.
Proof. We shall prove that $\mathrm{N}_{\mathrm{k}+\mathrm{l}}=\mathrm{N}_{\mathrm{k}+\mathrm{l}-1}$ by induction on l . The induction basis (case $\mathrm{l}=1$) follows immediately from our notation. Suppose that $\mathrm{N}_{\mathrm{k}+\mathrm{l}}=\mathrm{N}_{\mathrm{k}+\mathrm{l}-1}$; let us prove that $\mathrm{N}_{\mathrm{k}+\mathrm{l}+1}=\mathrm{N}_{\mathrm{k}+\mathrm{l}}$. Let us take a vector $v \in \mathrm{~N}_{\mathrm{k}+\mathrm{l}+1}$, so $\varphi^{\mathrm{k}+\mathrm{l}+1}(v)=0$. We have $\varphi^{\mathrm{k}+\mathrm{l}+1}(v)=\varphi^{k+1}(\varphi(v))$, so $\varphi(v) \in \mathrm{N}_{\mathrm{k}+\mathrm{l}}$. But by the induction hypothesis $\mathrm{N}_{\mathrm{k}+\mathrm{l}}=\mathrm{N}_{\mathrm{k}+\mathrm{l}-1}$, so $\varphi^{\mathrm{k}+\mathrm{l}-1}(\varphi(v))=0$, or $\varphi^{\mathrm{k}+\mathrm{l}}(v)=0$, so $v \in \mathrm{~N}_{\mathrm{k}+\mathrm{l}}$, as required.
Lemma 2. Under our assumptions, we have $\operatorname{ker}\left(\varphi^{k}\right) \cap \operatorname{Im}\left(\varphi^{k}\right)=\{0\}$.
Proof. Indeed, suppose that $v \in \operatorname{ker}\left(\varphi^{\mathrm{k}}\right) \cap \operatorname{Im}\left(\varphi^{\mathrm{k}}\right)$. This means that $\varphi^{\mathrm{k}}(v)=0$ and that $v=\varphi^{k}(w)$ for some vector w. It follows that $\varphi^{2 k}(w)=0$, so $w \in \mathrm{~N}_{2 \mathrm{k}}$. But from the previous lemma we know that $\mathrm{N}_{2 \mathrm{k}}=\mathrm{N}_{\mathrm{k}}$, so $w \in N_{k}$. Thus, $v=\varphi^{\mathrm{k}}(w)=0$, which completes the proof.
Lemma 3. Under our assumptions, we have $\mathrm{V}=\operatorname{ker}\left(\varphi^{\mathrm{k}}\right) \oplus \operatorname{Im}\left(\varphi^{\mathrm{k}}\right)$.
Proof. Indeed, consider the sum of these two subspaces (which is, as we just proved in the previous lemma, direct). It is a subspace of V of $\operatorname{dimension} \operatorname{dim} \operatorname{ker}\left(\varphi^{\mathrm{k}}\right)+\operatorname{dim} \operatorname{Im}\left(\varphi^{\mathrm{k}}\right)=\operatorname{dim}(\mathrm{V})$, so it has to coincide with V.

