1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 21

Finishing the case of a general linear transformation

Recall that last time we proved that for the sequence of subspaces $N_1 = \ker(\phi)$, $N_2 = \operatorname{Ker}(\phi^2)$, ..., $N_m = \ker(\phi^m)$, ..., once we have $N_k = N_{k+1}$ for some k, we have $N_{k+1} = N_k$ for all l > 0, and moreover $\operatorname{Ker}(\phi^k) \cap \operatorname{Im}(\phi^k) = \{0\}$ and $V = \operatorname{Ker}(\phi^k) \oplus \operatorname{Im}(\phi^k)$.

Note that the latter result explains the difference between the case $\varphi^2 = \varphi$ and $\varphi^2 = 0$ that we discussed last week. In the case $\varphi^2 = \varphi$ we of course have $\operatorname{Ker}(\varphi) = \operatorname{Ker}(\varphi^2)$, so $V = \operatorname{Ker}(\varphi) \oplus \operatorname{Im}(\varphi)$, while in the case $\varphi^2 = 0$, usually $\operatorname{Ker}(\varphi) \neq \operatorname{Ker}(\varphi^2)$ but $\operatorname{Ker}(\varphi^2) = \operatorname{Ker}(\varphi^3)$ always, so we cannot expect that $V = \operatorname{Ker}(\varphi) \oplus \operatorname{Im}(\varphi)$.

Lemma 1. 1. Both $\operatorname{Ker}(\phi^k)$ and $\operatorname{Im}(\phi^k)$ are invariant subspaces of ϕ .

2. On the first subspace, the linear transformation φ has just the zero eigenvalue.

3. On the second subspace, all eigenvalues of φ are different from zero.

Proof. 1. The invariance is straightforward: if $\nu \in \text{Ker}(\varphi^k)$, so that $\varphi^k(\nu) = 0$, then of course

$$\phi^{k}(\phi(\nu)) = \phi^{k+1}(\nu) = 0$$

so $\varphi(\nu) \in \operatorname{Ker}(\varphi^k)$, and similarly, if $\nu \in \operatorname{Im}(\varphi^k)$, so that $\nu = \varphi^k(w)$, then of course

$$\varphi(v) = \varphi(\varphi^{k}(w)) = \varphi^{k+1}(w) = \varphi^{k}(\varphi(w)),$$

so $\varphi(\nu) \in \operatorname{Im}(\varphi^k)$.

2. If $\varphi(\nu) = \mu \nu$ for some $0 \neq \nu \in \text{Ker}(\varphi^k)$, then $0 = \varphi^k(\nu) = \mu^k \nu$, so $\mu = 0$.

3. If $\varphi(\nu) = 0$ for some $0 \neq \nu \in \text{Im}(\varphi^k)$, then $\varphi^k(\nu) = 0$, but we know that $\text{Im}(\varphi^k) \cap \text{Ker}(\varphi^k) = \{0\}$, which is a contradiction.

The end of the proof utilises these results to proceed by induction, namely by induction by the number of distinct eigenvalues of φ .

We shall decompose V into a direct sum of invariant subspaces for each of which φ has only one eigenvalue, proving the following theorem.

Theorem 1. For every linear transformation $\varphi: V \to V$ whose (different) eigenvalues are $\lambda_1, \ldots, \lambda_k$, there exist integers $\mathfrak{m}_1, \ldots, \mathfrak{m}_k$ such that

$$V = \operatorname{Ker}(\varphi - \lambda_1 I)^{\mathfrak{m}_1} \oplus \ldots \oplus \operatorname{Ker}(\varphi - \lambda_k I)^{\mathfrak{m}_k}.$$

Proof. We shall prove this result by induction on the number of distinct eigenvalues of φ .

Let λ be an eigenvalue of ϕ , and let us consider the transformation $B_{\lambda} = \phi - \lambda I$. Considering kernels of its powers, we find the first place k where they stabilise, so that $\operatorname{Ker}(B_{\lambda}^{k}) = \operatorname{Ker}(B_{\lambda}^{k+1}) = \dots$

Note that the subspaces $\operatorname{Ker}(B_{\lambda}^{k})$ and $\operatorname{Im}(B_{\lambda}^{k})$ are invariant subspaces of φ . (Indeed, we already know that these are invariant subspaces of B_{λ} , and $\varphi = B_{\lambda} + \lambda I$). Note also that we have $V = \operatorname{Ker}(B_{\lambda}^{k}) \oplus \operatorname{Im}(B_{\lambda}^{k})$.

On the invariant subspace $\operatorname{Ker}(B_{\lambda}^{k})$, B_{λ} has only the eigenvalue 0, so $\varphi = B_{\lambda} + \lambda I$ has only the eigenvalue λ . Also, on the invariant subspace $\operatorname{Im}(B_{\lambda}^{k})$, B_{λ} has no zero eigenvalues, hence φ has no eigenvalues equal to λ . Hence, we may apply the induction hypothesis to the linear transformation φ on the vector space $V' = \operatorname{Im}(B_{\lambda}^{k})$ where it has fewer eigenvalues.

Let us see what happens for each individual subspace $\text{Ker}(\varphi - \lambda I)^m$. Naturally, the linear transformation $B_{\lambda} = \varphi - \lambda I$ is nilpotent when restricted to that subspace. Therefore, the results of last week allow us to find a basis of threads for this linear transformation, and its matrix is block-diagonal made of blocks

$$J_{l} = \begin{pmatrix} 0 & 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & 0 & \dots & 1 & 0 \end{pmatrix},$$

one block J_1 for each thread of length 1. Recalling that $\varphi = B_{\lambda} + \lambda I$, we see that relative to the same basis of threads that we found, the linear transformation φ has a block-diagonal matrix made of blocks

$$J_{l}(\lambda) = \begin{pmatrix} \lambda & 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & \lambda & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & \lambda & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & 0 & 0 & \dots & \lambda & 0 \\ 0 & 0 & 0 & 0 & \dots & 1 & \lambda \end{pmatrix}$$

one block $J_{l}(\lambda)$ for each thread of length l.

Summing up, we obtain the following theorem (which is usually called Jordan normal form theorem, or Jordan decomposition theorem):

Jordan normal form theorem. Let V be a finite-dimesional vector space. For a linear transformation $\varphi \colon V \to V$, there exist

• a decomposition of V

$$V = V_1 \oplus V_2 \oplus \ldots \oplus V_p$$

into a direct sum of invariant subspaces of φ ;

• a basis $e_1^{(i)}, \ldots, e_{n_i}^{(i)}$ of V_i for each $i = 1, \ldots, p$ such that

$$\begin{split} (\phi - \lambda_{i}I)e_{1}^{(i)} &= e_{2}^{(i)}; \\ (\phi - \lambda_{i}I)e_{2}^{(i)} &= e_{3}^{(i)}; \\ & \cdots \\ (\phi - \lambda_{i}I)e_{n_{i}}^{(i)} &= 0 \end{split}$$

for some λ_i (which may coincide or be different for different *i*). Dimensions of these subspaces and numbers λ_i are determined uniquely up to re-ordering.

Examples

From our proof, one sees that for computing the Jordan normal form and a Jordan basis of a linear transformation φ on a vector space V, one can use the following plan:

• Find all eigenvalues of φ (that is, compute the characteristic polynomial det(A-cI) of the corresponding matrix A, and determine its roots $\lambda_1, \ldots, \lambda_k$).

• For each eigenvalue λ , form the linear transformation $B_{\lambda} = \phi - \lambda I$ and consider the increasing sequence of subspaces

$$\operatorname{Ker} B_{\lambda} \subset \operatorname{Ker} B_{\lambda}^{2} \subset \dots$$

and determine where it stabilizes, that is find k which is the smallest number such that Ker $B_{\lambda}^{k} = \text{Ker } B_{\lambda}^{k+1}$. Let $U_{\lambda} = \text{Ker } B_{\lambda}^{k}$. The subspace U_{λ} is an invariant subspace of B_{λ} (and φ), and B_{λ} is nilpotent on U_{λ} , so it is possible to find a basis consisting of several "threads" of the form $f, B_{\lambda}f, B_{\lambda}^{2}f, \ldots$, where B_{λ} shifts vectors along each thread (as in the previous homework).

• Joining all the threads (for different λ) together, we get a Jordan basis for A. A thread of length p for an eigenvalue λ contributes a Jordan block $J_{p}(\lambda)$ to the Jordan normal form.

Example 1. Let
$$V = \mathbb{R}^3$$
, and $A = \begin{pmatrix} -2 & 2 & 1 \\ -7 & 4 & 2 \\ 5 & 0 & 0 \end{pmatrix}$.

The characteristic polynomial of A is $-t + 2t^2 - t^3 = -t(1-t)^2$, so the eigenvalues of A are 0 and 1. Furthermore, rk(A) = 2, $rk(A^2) = 2$, rk(A - I) = 2, $rk(A - I)^2 = 1$. Thus, the kernels of powers of

Furthermore, rk(A) = 2, $rk(A^2) = 2$, rk(A - I) = 2, $rk(A - I)^2 = 1$. Thus, the kernels of powers of A stabilise instantly, so we should expect a thread of length 1 for the eigenvalue 0, whereas the kernels of powers of A - I do not stabilise for at least two steps, so that would give a thread of length at least 2, hence a thread of length 2 because our space is 3-dimensional.

To determine the basis of Ker(A), we solve the system Av = 0 and obtain a vector $f = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$.

To deal with the eigenvalue 1, we see that the kernel of A - I is spanned by the vector $\begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix}'$, the kernel

of
$$(A-I)^2 = \begin{pmatrix} 0 & 0 & 0\\ 10 & -5 & -3\\ -20 & 10 & 6 \end{pmatrix}$$
 is spanned by the vectors $\begin{pmatrix} 1/2\\ 1\\ 0 \end{pmatrix}$ and $\begin{pmatrix} 3/10\\ 0\\ 1 \end{pmatrix}$. Reducing the latter vectors

using the former one, we end up with the vector $\mathbf{e} = \begin{pmatrix} 0\\ 3\\ -5 \end{pmatrix}$, which gives rise to a thread \mathbf{e} , $(\mathbf{A} - \mathbf{I})\mathbf{e} = \begin{pmatrix} 1\\ -1\\ 5 \end{pmatrix}$. Overall, a Jordan basis is given by \mathbf{f} , \mathbf{e} , $(\mathbf{A} - \mathbf{I})\mathbf{e}$, and the Jordan normal form has a block of size 1 with 0 on

Example 2. Let
$$V = \mathbb{R}^4$$
, and $A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$.
 $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 11 & 6 & -4 & -4 \\ 22 & 15 & -8 & -9 \\ -3 & -2 & 1 & 2 \end{pmatrix}$.

the diagonal, and a block of size 2 with 1 on the diagonal:

The characteristic polynomial of A is $1 - 2t^2 + t^4 = (1 + t)^2(1 - t)^2$, so the eigenvalues of A are -1 and 1. To avoid unnecessary calculations (similar to avoiding computing $(A - I)^3$ in the previous example), let us compute the ranks for both eigenvalues simultaneously. For $\lambda = -1$ we have

$$A + I = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 11 & 7 & -4 & -4 \\ 22 & 15 & -7 & -9 \\ -3 & -2 & 1 & 3 \end{pmatrix}, \text{ rk}(A + I) = 3, (A + I)^2 = \begin{pmatrix} 12 & 8 & -4 & -4 \\ 12 & 8 & -4 & -4 \\ 60 & 40 & -20 & -24 \\ -12 & -8 & 4 & 8 \end{pmatrix}, \text{ rk}((A + I)^2) = 2.$$

For $\lambda = 1$ we have $A - I = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 11 & 5 & -4 & -4 \\ 22 & 15 & -9 & -9 \\ -3 & -2 & 1 & 1 \end{pmatrix}, \text{ rk}(A - I) = 3, (A - I)^2 = \begin{pmatrix} 12 & 4 & -4 & -4 \\ -32 & -16 & 12 & 12 \\ -28 & -20 & 12 & 12 \\ 0 & 0 & 0 & 0 \end{pmatrix},$

 $rk((A - I)^2) = 2$. Thus, each of these eigenvalues gives rise to a thread of length at least 2, and since our vector space is 4-dimensional, each of the threads should be of length 2, and in each case the stabilisation happens on the second step.

In the case of the eigenvalue -1, we first determine the kernel of A + I, solving the system $(A + I)\nu = 0$; this gives us a vector $\begin{pmatrix} -1\\ 1\\ -1\\ 0 \end{pmatrix}$. The equations that determine the kernel of $(A + I)^2$ are t = 0, 3x + 2y = z

so y and z are free variables, and for the basis vectors of that kernel we can take $\begin{pmatrix} 1/3 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 2/3 \\ 1 \\ 0 \\ 0 \end{pmatrix}$.

Reducing the basis vectors of $\operatorname{Ker}(A + I)^2$ using the basis vector of $\operatorname{Ker}(A + I)$, we end up with a relative basis vector $\mathbf{e} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 0 \end{pmatrix}$, and a thread $\mathbf{e}, (A + I)\mathbf{e} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}$.

In the case of the eigenvalue 1, we first determine the kernel of A-I, solving the system (A-I)v = 0; this gives us a vector $\begin{pmatrix} 0\\0\\1\\-1 \end{pmatrix}$. The equations that determine the kernel of $(A-I)^2$ are 4x = z + t, 4y = z + t so z

and t are free variables, and for the basis vectors of that kernel we can take $\begin{pmatrix} 1/4\\ 1/4\\ 1\\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1/4\\ 1/4\\ 0\\ 1 \end{pmatrix}$. Reducing

the basis vectors of $\operatorname{Ker}(A - I)^2$ using the basis vector of $\operatorname{Ker}(A + I)$, we end up with a relative basis vector $f = \begin{pmatrix} 1/4 \\ 1/4 \\ 0 \\ 1 \end{pmatrix}$, and a thread $e, (A - I)e = \begin{pmatrix} 0 \\ 0 \\ 1/4 \\ -1/4 \end{pmatrix}$. Finally, the vectors e, (A + I)e, f, (A - I)f form a Jordan basis for A; the Jordan normal form of A is $\begin{pmatrix} -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$.