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Lecture 2

Rank and nullity of a linear map

Last time we defined the notions of the kernel and the image of a linear map ϕ : V →W.

Definition 1. The rank of a linear map ϕ, denoted by rk(ϕ), is the dimension of the image of ϕ. The
nullity of ϕ, denoted by null(ϕ), is the dimension of the kernel of ϕ.

Example 1. Let ι : V → V be the identity map. Then null(ι) = 0, and rk(ι) = dim(V).

Example 2. Let 0 : V → W be the map sending every vector v to 0 ∈ W. Then null(ι) = dim(V), and
rk(ι) = 0.

Example 3. Let ϕ : R2 → R3 be linear map given by the left multiplication by the matrix A =

 2 1
4 2
10 5

.

Then A

(
x
y

)
=

 2x+ y
4x+ 2y
10x+ 5y

 = (2x+ y)

12
5

, so

• every vector in Im(ϕ) is proportional to

12
5

, therefore rk(ϕ) = 1,

• ϕ(
(
x
y

)
) = 0 implies 2x+ y = 0, so y = −2x, and

(
x
y

)
= x

(
1
−2

)
, therefore null(ϕ) = 1.

In fact, it is always enough to compute just one of those two numbers to know the other, as the following
result shows.

Theorem 1 (Rank-nullity theorem). For a linear map ϕ : V →W, we have

rk(ϕ) + null(ϕ) = dim(V).

Proof. Let us fix some coordinate systems e1, . . . , en ∈ V and f1, . . . , fm ∈W, and represent ϕ by the matrix
A = Aϕ,e,f .

Since Ker(ϕ) consists of vectors v such that ϕ(v) = 0, we see that null(ϕ) is the dimension of the solution
space of the system Ax = 0, where x = ve. This dimension is equal to the number of free variables, that is
the number of non-pivotal columns of the reduced row echelon form.

Also, Im(ϕ) consists of all vectors of the form ϕ(v) with v ∈ V. Since each v can be written as
v = x1e1 + · · · + xnen, we can write ϕ(v) = x1ϕ(e1) + · · · + xnϕ(en), so Im(ϕ) is spanned by ϕ(e1), . . . ,
ϕ(en). Columns of coordinates of these vectors are precisely the columns of the matrix A, by its definition.
In fact, we may assume A to be in its reduced row echelon form, since bringing it to that form can be done
by multiplying A by an invertible matrix on the left (the product of elementary matrices corresponding to
row operations bringing A to reduced row echelon form), and this, as we know, merely corresponds to a
change of basis in W. If A is a reduced row echelon form matrix, its columns with pivots are some of the
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standard unit vectors, and all other columns are their combinations. Thus rk(ϕ) is the number of pivotal
columns of the reduced row echelon form.

Altogether, rk(ϕ) + null(ϕ) is the total number of columns, which is dim(V).

Remark 1. Note that in fact we can change bases in both the source and the target of ϕ, and hence do
both elementary row and elementary column operations without changing the rank and the nullity. This
is useful for some computations. By doing both elementary row and elementary column operations, every

m× n-matrix A can be brought to the form

(
Ik 0(n−k)×k

0k×(m−k) 0(n−k)×(m−k)

)
, where 0a×b is the a× b-matrix

whose all entries are equal to 0. Here k is the rank of the corresponding linear map.

The following simple fact concerning subspaces may have eluded us so far.

Lemma 1. Suppose that U is a subspace of a vector space V. Then any basis of U can be extended to a
basis of V, in particular, dim(U) 6 dim(V).

Proof. If U = V, there is nothing to prove. Otherwise, let us take a basis u1, . . . , uk of U. There exists a
vector v ∈ V which cannot be represented as a linear combination of u1, . . . , uk. Therefore, u1, . . . , uk, v
are linearly independent. Now we replace U by span(u1, . . . , uk, v). If that subspace is equal to V, we
are done. Otherwise, we continue in the same manner. Every time dimension increases by 1, so it cannot
continue infinitely long, since the number of elements in a linearly independent system cannot exceed dim(V).
Therefore, at some stage we obtain the whole of V, and the statement follows.

Another proof of rank-nullity theorem. This other proof of the rank-nullity theorem will be useful
in some subsequent classes.

The kernel of ϕ is a subspace of V. Let us choose a basis f1, . . . , fk of Ker(ϕ). We can extend this basis
to a basis of V by adjoining vectors g1, . . . , gl. I claim that the vectors ϕ(g1), . . . , ϕ(gl) form a basis of
Im(ϕ). Since

ϕ(a1f1 + · · ·+ akfk + b1g1 + blgl) = a1ϕ(f1) + · · ·+ akϕ(fk) + b1ϕ(g1) + · · ·+ blϕ(gl),

and ϕ(fi) = 0, the vectors ϕ(g1), . . . , ϕ(gl) form a spanning set. Suppose they are linearly dependent, so

0 = c1ϕ(g1) + · · ·+ clϕ(gl) = ϕ(c1g1 + · · ·+ clgl).

But this would imply c1g1 + · · ·+ clgl ∈ Ker(ϕ), so

c1g1 + · · ·+ clgl = d1f1 + · · ·+ dkfk,

contradicting the basis property of fi and gj taken together. Therefore, rk(ϕ) + null(ϕ) = l+ k = dim(V).
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