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Lecture 3

Let us mention one consequence of the rank-nullity theorem from the previous class.

Proposition 1. For any operator ϕ : V →W, we have rk(ϕ) 6 min(dim(V),dim(W)).

Proof. We have rk(ϕ) 6 dim(W) because Im(ϕ) ⊂ W, and the dimension of a subspace cannot exceed the
dimension of the whole space. Also, rk(ϕ) = dim(V) − null(ϕ) 6 dim(V).

(Alternatively, one can argue that being the number of pivots in the reduced row echelon form, the rank
cannot exceed either the number of rows or the number of columns, but this proof shows some other useful
techniques, so we mention it here).

The rank-nullity theorem and its proofs actually tells us precisely how to simplify matrices of most general
linear maps ϕ : V → W. If we allowed to change bases of V and W independently, then rank is the only

invariant: every m×n-matrix A can be brought to the form

(
Ik 0(n−k)×k

0k×(m−k) 0(n−k)×(m−k)

)
, where k = rk(A).

However, if we restrict ourselves to linear transformations ϕ : V → V, then we can only change one basis,
and under the changes we replace matrices A by C−1AC, where C is the transition matrix. We know several
things that remain the same under this change, e.g. the trace and the determinant, so the story gets much
more subtle.

Reminder: eigenvalues and eigenvectors

Recall that if V is a vector space, ϕ : V → V is a linear transformation, and v 6= 0 a vector for which ϕ(v)
is proportional to v, that is ϕ(v) = c · v for some c, then v is called an eigenvector of ϕ, and c is the
corresponding eigenvalue.

Usually, one first finds all eigenvalues, and then the corresponding eigenvectors. If ϕ is represented by an
n× n-matrix A = Aϕ,e, then eigenvalues are roots of the equation det(A− XIn) = 0. The left hand side of
this equation is a degree n polynomial in X. Indeed, each matrix element is a polynomial in X of degree 0 or
1, and each term in the expansion of the determinant is a product of n elements, one from each row/column.
Thus, every term is of degree at most n. The only term of degree n is the one where all elements are of
degree one, that is taken from the diagonal. Therefore, Xn appears in our equation with coefficient (−1)n.

Theorem 1. If ϕ has n distinct eigenvalues, then the corresponding eigenvectors form a basis of V.

Proof. We shall first prove the following statement: if c1, . . . , ck are pairwise distinct scalars, and v1, . . . ,
vk are eigenvectors of ϕ whose eigenvalues are c1, . . . , ck, then v1, . . . , vk are linearly independent. Let
us prove it by induction on k. For k = 1 there is nothing to prove: an eigenvector is a nonzero vector by
definition. Suppose we know the statement for some k, and wish to prove it for k+ 1. Assume the contrary,
let’s say that a1v1 + · · ·+ akvk + ak+1vk+1 = 0, and some of the coefficients are nonzero. We have

ϕ(a1v1 + · · ·+ akvk + ak+1vk+1) = a1ϕ(v1) + · · ·+ akϕ(vk) + ak+1ϕ(vk+1) = 0,

so
a1c1v1 + · · ·+ akckvk + ak+1ck+1vk+1 = 0.
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Let us subtract from this equation ck+1 times the original one, obtaining

0 = a1c1v1 + · · ·+ akckvk + ak+1ck+1vk+1 − ck+1(a1v1 + · · ·+ akvk + ak+1vk+1),

which can be rewritten as

a1(c1 − ck+1)v1 + a2(c2 − ck+1)v2 + · · ·+ ak(ck − ck+1)vk = 0.

By induction hypothesis, this implies

a1(c1 − ck+1) = · · · = ak(ck − ck+1) = 0,

and since all ci are distinct, we have a1 = · · · = ak = 0, and consequently ak+1vk+1 = 0, implying ak+1 = 0.
To complete the proof, we observe that because of what we just proved, a linear transformation with n

distinct eigenvalue has n linearly independent eigenvectors, and they must form a basis (else they can be
extended to a basis consisting of more than dim(V) vectors).

If eigenvalues are not distinct, everything can become more complicated.

Example 1. Let A =

(
1 0
0 1

)
. We have det(A − XI2) = (1 − X)2, so the only eigenvalue is 1. We have

Av = v for every vector v, so any basis is a basis of eigenvectors.

Example 2. Let A =

(
0 1
0 0

)
. We have det(A − XI2) = X2, so the only eigenvalue is 0. Moreover, all

eigenvectors are scalar multiples of

(
1
0

)
, so in this case there is no basis of eigenvectors.

Example 3. Let A =

(
0 1
−1 0

)
. We have det(A−XI2) = X

2+1, so if we use real scalars, then there are no

eigenvalues, and if scalars are complex, the eigenvalues are ±i, and there is a basis consisting of eigenvectors.

If v1, . . . , vn is a basis of eigenvectors for ϕ, then by inspection we conclude that ϕ is represented by
a diagonal matrix with respect to that basis (all off-diagonal entries are zero). For this reason, a linear
operator is said to be diagonalisable if it has a basis of eigenvectors.

One example of diagonalisation was discussed in the first half of the module in the context of Fibonacci
numbers, Lecture 22. There have been further applications outlined in Lectures 23 and 24. Our goal in this
semester is to investigate what happens in the cases when there is no basis of eigenvectors.

Unless otherwise specified, we shall now use complex numbers as scalars, to at least ensure that each linear
transformation has eigenvalues. Indeed, eigenvalues, as we discussed before, are roots of the characteristic
polynomial of A, χA(X) = det(A− XIn), and over complex numbers, every polynomial equation has a root.

Let us discuss a few more examples of diagonalisability.

Example 4. Consider A =

0 1 0
0 0 1
1 0 0

. Then A − XI3 =

−X 1 0
0 −X 1
1 0 −X

, and χA(X) = 1 − X3. The

complex roots of this polynomial are complex roots of unity, 1 and −1±i
√
3

2
. Since they are distinct, there is

a basis of eigenvectors for A.

Example 5. Let us consider the matrix A =

 0 1 0
0 0 1
14 −23 10

 . The characteristic polynomial of this matrix

is 14− 23X+ 10X2 − X3. We note that c = 1 is a root of this polynomial, so it is divisible by X− 1. Doing
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the long division
− X2 + 9X− 14

X− 1
)
− X3 + 10X2 − 23X+ 14
X3 − X2

9X2 − 23X
− 9X2 + 9X

− 14X+ 14
14X− 14

0

we observe that the other roots are roots of −X2 + 9X− 14 = −(X− 2)(X− 7). Therefore, the eigenvalues of
this matrix are 1, 2, and 7. By the theorem we proved, there exists a basis of eigenvectors.
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