1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 4

One more example for diagonalisation

Let V is the space of all polynomials in t of degree at most n , and let $\varphi: \mathrm{V} \rightarrow \mathrm{V}$ be the linear transformation given by $\left(\varphi(p(t))=p(t)-2 p^{\prime}(t)\right.$. Let us find out whether φ can be diagonalised.

If $\varphi(p(t))=\lambda p(t)$, we have $p(t)-2 p^{\prime}(t)=\lambda p(t)$, or $(1-\lambda) p(t)-2 p^{\prime}(t)=0$. If $\lambda \neq 1$, the leading term of $p(t)$ will not cancel, so there are no nontrivial solutions. If $\lambda=1$, we have $-2 p^{\prime}(t)=0$, so $p(t)$ is a constant. Clearly, for $n>0$ there is basis consisting of eigenvectors (we cannot express polynomials of positive degree using eigenvectors), so the matrix of φ cannot be made diagonal by the change of basis.

All the same can be done using the basis $1, t, \ldots, t^{n}$ of the space of polynomials; the matrix of our operator relative to this basis is, as it is easy to see,

$$
\left(\begin{array}{cccccc}
1 & -2 & 0 & \ldots & \ldots & 0 \\
0 & 1 & -4 & \ldots & \ldots & 0 \\
0 & 0 & 1 & \ldots & \ldots & 0 \\
\vdots & \vdots & \ldots & \ddots & \ldots & 0 \\
0 & 0 & 0 & \ldots & 1 & -2 n \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

and all our statements easily follow from computations with matrices.

Sums and direct sums

Let V be a vector space. Recall that the span of a set of vectors $v_{1}, \ldots, v_{\mathrm{k}} \in \mathrm{V}$ is the set of all linear combinations $\mathrm{c}_{1} v_{1}+\ldots+\mathrm{c}_{\mathrm{k}} v_{\mathrm{k}}$. It is denoted by $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$. Vectors $v_{1}, \ldots, v_{\mathrm{k}}$ are linearly independent if and only if they form a basis of their linear span. Our next definition provides a generalization of what is just said, dealing with subspaces, and not vectors.

Definition 1. Let V_{1}, \ldots, V_{k} be subspaces of V. Their sum $V_{1}+\ldots+V_{k}$ is defined as the set of vectors of the form $v_{1}+\ldots+v_{k}$, where $v_{1} \in \mathrm{~V}_{1}, \ldots, v_{k} \in \mathrm{~V}_{\mathrm{k}}$. The sum of the subspaces $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{k}}$ is said to be direct if $0+\ldots+0$ is the only way to represent $0 \in \mathrm{~V}_{1}+\ldots+\mathrm{V}_{\mathrm{k}}$ as a sum $v_{1}+\ldots+v_{\mathrm{k}}$. In this case, it is denoted by $\mathrm{V}_{1} \oplus \ldots \oplus \mathrm{~V}_{\mathrm{k}}$.

Lemma 1. $\mathrm{V}_{1}+\ldots+\mathrm{V}_{\mathrm{k}}$ is a subspace of V .
Proof. It is sufficient to check that $\mathrm{V}_{1}+\ldots+\mathrm{V}_{\mathrm{k}}$ is closed under addition and multiplication by numbers. Clearly,

$$
\left(v_{1}+\ldots+v_{\mathrm{k}}\right)+\left(v_{1}^{\prime}+\ldots+v_{\mathrm{k}}^{\prime}\right)=\left(\left(v_{1}+v_{1}^{\prime}\right)+\ldots+\left(v_{\mathrm{k}}+v_{\mathrm{k}}^{\prime}\right)\right)
$$

and

$$
\mathrm{c}\left(v_{1}+\ldots+v_{\mathrm{k}}\right)=\left(\left(\mathrm{c} v_{1}\right)+\ldots+\left(\mathrm{c} v_{\mathrm{k}}\right)\right)
$$

and the lemma follows, since each V_{i} is a subspace and hence closed under the vector space operations.

Example 1. Let $V=\mathbb{R}^{3}$, and let $V_{1}=\operatorname{span}\left(e_{1}, e_{2}\right), V_{2}=\operatorname{span}\left(e_{2}, e_{3}\right)$, where e_{i} are standard unit vectors. Then the sum $V_{1}+V_{2}$ consists of all combinations of e_{1}, e_{2}, e_{3}, so $V_{1}+V_{2}=V$. This sum is not direct, since $0=e_{2}-e_{2}$ is a nontrivial representation of 0 .

On the other hand, for $V_{1}=\operatorname{span}\left(e_{1}, e_{2}\right)$ and $V_{2}=\operatorname{span}\left(e_{3}\right)$ the sum is still equal to V and is direct (exercise).

Example 2. For a collection of nonzero vectors $v_{1}, \ldots, v_{k} \in V$, consider the subspaces V_{1}, \ldots, V_{k}, where V_{i} consists of all multiples of v_{i}. Then, clearly, $\mathrm{V}_{1}+\ldots+\mathrm{V}_{\mathrm{k}}=\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$, and this sum is direct if and only if the vectors v_{j} are linearly independent.

Example 3. For two subspaces V_{1} and V_{2}, their sum is direct if and only if $V_{1} \cap V_{2}=\{0\}$. Indeed, if $v_{1}+v_{2}=0$ is a nontrivial representation of $0, v_{1}=-v_{2}$ is in the intersection, and vice versa.

Theorem 1. If V_{1} and V_{2} are subspaces of V , we have

$$
\operatorname{dim}\left(V_{1}+V_{2}\right)=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)-\operatorname{dim}\left(V_{1} \cap V_{2}\right)
$$

In particular, the sum of V_{1} and V_{2} is direct if and only if $\operatorname{dim}\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)=\operatorname{dim}\left(\mathrm{V}_{1}\right)+\operatorname{dim}\left(\mathrm{V}_{2}\right)$.
Proof. Let us pick a basis e_{1}, \ldots, e_{k} of the intersection $V_{1} \cap V_{2}$, and extend this basis to a bigger set of vectors in two different ways, one way obtaining a basis of V_{1}, and the other way - a basis of V_{2}. Let $e_{1}, \ldots, e_{k}, f_{1}, \ldots, f_{l}$ and $e_{1}, \ldots, e_{k}, g_{1}, \ldots, g_{m}$ be the resulting bases of V_{1} and V_{2} respectively. Let us prove that

$$
e_{1}, \ldots, e_{k}, f_{1}, \ldots, f_{l}, g_{1}, \ldots, g_{m}
$$

is a basis of $V_{1}+V_{2}$. It is a complete system of vectors, since every vector in $V_{1}+V_{2}$ is a sum of a vector from V_{1} and a vector from V_{2}, and vectors there can be represented as linear combinations of $e_{1}, \ldots, e_{k}, f_{1}, \ldots, f_{l}$ and $e_{1}, \ldots, e_{k}, g_{1}, \ldots, g_{m}$ respectively. To prove linear independence, let us assume that

$$
a_{1} e_{1}+\ldots+a_{k} e_{k}+b_{1} f_{1}+\ldots+b_{l} f_{l}+c_{1} g_{1}+\ldots+c_{m} g_{m}=0
$$

Rewriting this formula as $a_{1} e_{1}+\ldots+a_{k} e_{k}+b_{1} f_{1}+\ldots+b_{l} f_{l}=-\left(c_{1} g_{1}+\ldots+c_{m} g_{m}\right)$, we notice that on the left we have a vector from V_{1} and on the right a vector from V_{2}, so both the left hand side and the right hand side is a vector from $\mathrm{V}_{1} \cap \mathrm{~V}_{2}$, and so can be represented as a linear combination of $e_{1}, \ldots, e_{\mathrm{k}}$ alone. However, the vectors on the right hand side together with e_{i} form a basis of V_{2}, so there is no nontrivial linear combination of these vectors that is equal to a linear combination of e_{i}. Consequently, all coefficients c_{i} are equal to zero, so the left hand side is zero. This forces all coefficients a_{i} and b_{i} to be equal to zero, since $e_{1}, \ldots, e_{k}, f_{1}, \ldots, f_{l}$ is a basis of V_{1}. This completes the proof of the linear independence of the vectors $e_{1}, \ldots, e_{k}, f_{1}, \ldots, f_{l}, g_{1}, \ldots, g_{m}$.

Summing up, $\operatorname{dim}\left(V_{1}\right)=k+l, \operatorname{dim}\left(V_{2}\right)=k+m, \operatorname{dim}\left(V_{1}+V_{2}\right)=k+l+m, \operatorname{dim}\left(V_{1} \cap V_{2}\right)=k$, and our theorem follows.

In practice, it is important sometimes to determine the intersection of two subspaces, each presented as a linear span of several vectors. We shall discuss it in the next class.

