
1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 4

One more example for diagonalisation

Let V is the space of all polynomials in t of degree at most n, and let ϕ : V → V be the linear transformation
given by (ϕ(p(t)) = p(t) − 2p ′(t). Let us find out whether ϕ can be diagonalised.

If ϕ(p(t)) = λp(t), we have p(t) − 2p ′(t) = λp(t), or (1 − λ)p(t) − 2p ′(t) = 0. If λ 6= 1, the leading
term of p(t) will not cancel, so there are no nontrivial solutions. If λ = 1, we have −2p ′(t) = 0, so p(t)
is a constant. Clearly, for n > 0 there is basis consisting of eigenvectors (we cannot express polynomials of
positive degree using eigenvectors), so the matrix of ϕ cannot be made diagonal by the change of basis.

All the same can be done using the basis 1, t, . . . , tn of the space of polynomials; the matrix of our
operator relative to this basis is, as it is easy to see,

1 −2 0 . . . . . . 0
0 1 −4 . . . . . . 0
0 0 1 . . . . . . 0
...

... . . .
. . . . . . 0

0 0 0 . . . 1 −2n
0 0 0 . . . 0 1


,

and all our statements easily follow from computations with matrices.

Sums and direct sums

Let V be a vector space. Recall that the span of a set of vectors v1, . . . , vk ∈ V is the set of all linear
combinations c1v1+ . . .+ckvk. It is denoted by span(v1, . . . , vk). Vectors v1, . . . , vk are linearly independent
if and only if they form a basis of their linear span. Our next definition provides a generalization of what is
just said, dealing with subspaces, and not vectors.

Definition 1. Let V1, . . . , Vk be subspaces of V. Their sum V1 + . . . + Vk is defined as the set of vectors
of the form v1 + . . . + vk, where v1 ∈ V1, . . . , vk ∈ Vk. The sum of the subspaces V1, . . . , Vk is said to be
direct if 0+ . . .+ 0 is the only way to represent 0 ∈ V1 + . . .+ Vk as a sum v1 + . . .+ vk. In this case, it is
denoted by V1 ⊕ . . .⊕ Vk.

Lemma 1. V1 + . . .+ Vk is a subspace of V.

Proof. It is sufficient to check that V1 + . . . + Vk is closed under addition and multiplication by numbers.
Clearly,

(v1 + . . .+ vk) + (v ′1 + . . .+ v
′
k) = ((v1 + v

′
1) + . . .+ (vk + v ′k))

and
c(v1 + . . .+ vk) = ((cv1) + . . .+ (cvk)),

and the lemma follows, since each Vi is a subspace and hence closed under the vector space operations.
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Example 1. Let V = R3, and let V1 = span(e1, e2), V2 = span(e2, e3), where ei are standard unit vectors.
Then the sum V1 + V2 consists of all combinations of e1, e2, e3, so V1 + V2 = V. This sum is not direct,
since 0 = e2 − e2 is a nontrivial representation of 0.

On the other hand, for V1 = span(e1, e2) and V2 = span(e3) the sum is still equal to V and is direct
(exercise).

Example 2. For a collection of nonzero vectors v1, . . . , vk ∈ V, consider the subspaces V1,. . . ,Vk, where Vi

consists of all multiples of vi. Then, clearly, V1 + . . . + Vk = span(v1, . . . , vk), and this sum is direct if and
only if the vectors vj are linearly independent.

Example 3. For two subspaces V1 and V2, their sum is direct if and only if V1 ∩ V2 = {0}. Indeed, if
v1 + v2 = 0 is a nontrivial representation of 0, v1 = −v2 is in the intersection, and vice versa.

Theorem 1. If V1 and V2 are subspaces of V, we have

dim(V1 + V2) = dim(V1) + dim(V2) − dim(V1 ∩ V2).

In particular, the sum of V1 and V2 is direct if and only if dim(V1 + V2) = dim(V1) + dim(V2).

Proof. Let us pick a basis e1, . . . , ek of the intersection V1 ∩ V2, and extend this basis to a bigger set of
vectors in two different ways, one way obtaining a basis of V1, and the other way — a basis of V2. Let
e1, . . . , ek, f1, . . . , fl and e1, . . . , ek, g1, . . . , gm be the resulting bases of V1 and V2 respectively. Let us prove
that

e1, . . . , ek, f1, . . . , fl, g1, . . . , gm

is a basis of V1+V2. It is a complete system of vectors, since every vector in V1+V2 is a sum of a vector from
V1 and a vector from V2, and vectors there can be represented as linear combinations of e1, . . . , ek, f1, . . . , fl
and e1, . . . , ek, g1, . . . , gm respectively. To prove linear independence, let us assume that

a1e1 + . . .+ akek + b1f1 + . . .+ blfl + c1g1 + . . .+ cmgm = 0.

Rewriting this formula as a1e1 + . . .+ akek + b1f1 + . . .+ blfl = −(c1g1 + . . .+ cmgm), we notice that on
the left we have a vector from V1 and on the right a vector from V2, so both the left hand side and the right
hand side is a vector from V1 ∩ V2, and so can be represented as a linear combination of e1, . . . , ek alone.
However, the vectors on the right hand side together with ei form a basis of V2, so there is no nontrivial
linear combination of these vectors that is equal to a linear combination of ei. Consequently, all coefficients
ci are equal to zero, so the left hand side is zero. This forces all coefficients ai and bi to be equal to zero,
since e1, . . . , ek, f1, . . . , fl is a basis of V1. This completes the proof of the linear independence of the vectors
e1, . . . , ek, f1, . . . , fl, g1, . . . , gm.

Summing up, dim(V1) = k+ l, dim(V2) = k+m, dim(V1 + V2) = k+ l+m, dim(V1 ∩ V2) = k, and our
theorem follows.

In practice, it is important sometimes to determine the intersection of two subspaces, each presented as
a linear span of several vectors. We shall discuss it in the next class.

2


