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In practice, it is important sometimes to determine the intersection of two subspaces, each presented as
a linear span of several vectors. This question naturally splits into two different questions.

First, it makes sense to find a basis of each of these subspaces. To determine a basis for a linear span
of given vectors, the easiest way is to form the matrix whose columns are the given vectors, and find
its reduced column echelon form (like the reduced row echelon form, but with elementary operations on
columns). Nonzero columns of the result form a basis of the linear span.

Once we know a basis v1,. . . , vk for the first subspace, and a basis w1, . . . , wl for the second one, the
question reduces to solving the linear system c1v1 + . . . + ckvk = d1w1 + . . . + dlwl. For each solution to
this system, the vector c1v1 + . . . + ckvk is in the intersection, and vice versa. Computationally, the first
step does a part of the job for us, because computing the reduced column echelon form produces a system
of equations with many zero entries already.

Example 1. Let us consider two following subspaces of R5: the subspace U is the span of the vectors
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We shall compute dimU and dimW, and describe the intersection of U ∩W.
Let us first find the bases of these subspaces. As we mentioned, we should compute reduced column

echelon forms, so in order to not introduce new notation, we shall temporarily transpose matrices, and write
coordinates of all vectors in rows. To find a basis of the space spanned by rows of a matrix, we bring it to
its reduced row echelon form; the nonzero rows of the result give us a basis. The reduced row echelon form

of the matrix

 2 1 0 −4 2
−4 1 3 −1 2
0 5 −1 −1 14

 is

1 0 0 −5/3 −1/3
0 1 0 −2/3 8/3
0 0 1 −7/3 −2/3

, and the reduced row echelon form

of the matrix


2 1 0 1 1
2 −1 −2 −3 −1
1 0 −2 −2 2
0 1 1 2 1

 is


1 0 0 0 −2/3
0 1 0 1 7/3
0 0 1 1 −4/3
0 0 0 0 0

 . This means that each of the subspaces

is three-dimensional. To compute the intersection, recall that by definition the intersection consists of all
vectors that belong to both of the subspaces. Let us denote by u1, u2, u3 the basis vectors for U found
above, and by w1, w2, w3 the basis vectors for W found above. Then the intersection consists of all vectors
v that can be represented in the form

v = c1u1 + c2u2 + c3u3 = c4w1 + c5w2 + c6w3

for some c1, c2, c3, c4, c5, c6, or, equivalently,

c1u1 + c2u2 + c3u3 − c4w1 − c5w2 − c6w3 = 0.
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This is a homogeneous system of linear equations with unknowns ci. Its matrix is
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

−5/3 −2/3 −7/3 0 −1 −1
−1/3 8/3 −2/3 2/3 −7/3 4/3


Bringing it to the reduced row echelon form (calculations are omitted), we get the matrix

1 0 0 0 1 2
0 1 0 0 −1 0
0 0 1 0 0 −1
0 0 0 1 1 2
0 0 0 0 0 0

 ,
so the general solution is c1 = −c5 − 2c6, c2 = c5, c3 = c6, c4 = −c5 − 2c6, and the intersection can be
described as the set of all vectors of the form (−c5 − 2c6)w1 + c5w2 + c6w3 = c5(w2 −w1)+ c6(w3 − 2w1),

so the vectors w2 −w1 =
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 form a basis of the intersection.

Invariant subspaces

Definition 1. Let ϕ : V → V be a linear transformation. A subspace U of V is said to be invariant under
ϕ if ϕ(U) ⊂ (U).

Example 2. All multiples of an eigenvector of ϕ form a subspace of V that is invariant under ϕ. Indeed,
all multiples of any vector form a subspace, and if it is an eigenvector, then ϕ maps any vector from this
subspace to its multiple.

Let us prove an important result that utilises the notion of an invariant subspace. As we mentioned
before, we assume that complex numbers are used as scalars.

Two linear transformations ϕ and ψ are said to commute if ϕ◦ψ = ψ◦ϕ, so that the result of consecutive
application of ϕ and ψ does not depend on the order in which they are applied.

Theorem 1. Any set of pairwise commuting operators ϕi : V → V has a common eigenvector.

Proof. We shall prove it by induction on dim(V). If dim(V) = 1, then any basis vector of V is a common
eigenvector for these operators. Assume the statement is proved for dim(V) = k. Let us prove it for
dim(V) = k + 1. If all the operators ϕi are scalar multiples of the identity map, that is there exist scalars
ci such that for all v and all i we have ϕi(v) = ci · v, then every non-zero vector is a common eigenvector
of these transformations. Suppose that for some i the operator ϕi is not a scalar multiple of the identity
map. Let us consider some eigenvalue λ of ϕi, and consider the solution space to the system of equations
ϕi(v) = λ · v. This solution space is a subspace W with 0 < dim(W) < dim(V). Let us note that W is an
invariant subspace of all our transformations: if w ∈W, and w ′ = ϕk(w), we have

ϕi(w
′) = ϕi(ϕk(w)) = ϕk(ϕi(w)) = ϕk(λ ·w) = λϕk(w) = λ ·w ′,

so w ′ ∈W. By induction, there is a common eigenvector in W, as required.
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