# 1212: Linear Algebra II 

Dr. Vladimir Dotsenko (Vlad)

Lecture 7

## Lengths and angles, Cauchy-Schwartz inequality

Definition 1. Let V be an Euclidean space. We define the length of a vector $v$ as $|v|=\sqrt{(v, v)}$, and the angle between two nonzero vectors $v$ and $w$ as the only angle $\alpha$ such that $0 \leqslant \alpha \leqslant 180^{\circ}$ and

$$
\cos \alpha=\frac{(v, w)}{|v||w|}
$$

Remark 1. In the case of usual 3D vectors we could prove that $(v, w)=|v||w| \cos \alpha$, because we worked with a particular scalar product that was defined on $V=\mathbb{R}^{3}$. Now, the scalar product is a part of the structure, and can be somewhat arbitrary, so we use our intuition from 3D to define the angle between two vectors.

Why are angles well defined?
Theorem 1 (Cauchy-Schwartz Inequality). For any two vectors v, w of a Euclidean space V we have

$$
(v, w)^{2} \leqslant(v, v)(w, w)
$$

with equality attained if and only if $v$ and $w$ are proportional.
In particular, for nonzero vectors $v$ and $w$ this implies that

$$
-1 \leqslant \frac{(v, w)}{|v||w|} \leqslant 1
$$

so the angle $\alpha$ between $v$ and $\mathcal{w}$ is well defined.
Proof. If $v=0$, the inequality states $0 \leqslant 0$, so there is nothing to prove. Otherwise, let us consider the function $f(t)=(t v-w, t v-w)$ defined for a real argument $t$. Expanding the brackets using the bilinearity and symmetry of scalar products, we obtain

$$
\mathrm{f}(\mathrm{t})=\mathrm{t}^{2}(v, v)-2 \mathrm{t}(v, w)+(w, w)
$$

so $f(t)$ is, for fixed $v$ and $w$, a quadratic polynomial in $t$ whose leading coefficient $(v, v)$ is positive. Also, $f(t)$ assumes non-negative values for all $t$. This can only happen if the discriminant of $f(t)$ is non-positive, for if it is positive, then $f(t)$ has two distinct roots $t_{1}$ and $t_{2}$, and we have $f(t)<0$ for $t_{1}<t<t_{2}$. The discriminant of $f(t)$ is $(2(v, w))^{2}-4(v, v)(w, w)=4\left((v, w)^{2}-(v, v)(w, w)\right)$, so we conclude that

$$
(v, w)^{2} \leqslant(v, v)(w, w)
$$

as required. The discriminant is zero if and only if $f(t)$ assumes the value 0 , and if $t_{0}$ is the corresponding value of $t$, then $t_{0} v=w$, so $v$ and $w$ are proportional.

## Orthogonal complements, and orthogonal direct sums

Now that we defined angles, we can in particular make better sense of orthogonality: $(v, w)=0$ implies that the angle between $v$ and $w$ is equal to $90^{\circ}$, so $v$ and $w$ are orthogonal in the usual sense.

Definition 2. Let $U$ be a subspace of a Euclidean space $V$. The set of all vectors $v$ such that $(v, u)=0$ for all $u \in U$ is called the orthogonal complement of $U$, and is denoted by $U^{\perp}$.

Lemma 1. For every subspace $\mathrm{U}, \mathrm{U}^{\perp}$ is also a subspace.
Proof. This follows immediately from the bilinearity property of scalar products: for example, if $v_{1}, \nu_{2} \in \mathrm{U}^{\perp}$, then for each $u \in U$ we have $\left(u, v_{1}+v_{2}\right)=\left(u, v_{1}\right)+\left(u, v_{2}\right)=0$.

Lemma 2. For every subspace U , we have $\mathrm{U} \cap \mathrm{U}^{\perp}=\{0\}$.
Proof. Indeed, if $u \in U \cap \mathrm{u}^{\perp}$, we have $(u, u)=0$, so $u=0$.
Lemma 3. For every finite-dimensional subspace $\mathrm{U} \subset \mathrm{V}$, we have $\mathrm{V}=\mathrm{U} \oplus \mathrm{U}^{\perp}$. (This justifies the name "orthogonal complement" for $\mathrm{U}^{\perp}$.)

Proof. Let $e_{1}, \ldots, e_{k}$ be an orthonormal basis of U . To prove that the direct sum coincides with V , it is enough to prove $\mathrm{V}=\mathrm{U}+\mathrm{U}^{\perp}$, or in other words that every vector $v \in \mathrm{~V}$ can be represented in the form $u+u^{\perp}$, where $u \in U, u^{\perp} \in U^{\perp}$. Equivalently, we need to represent $v$ in the form $c_{1} e_{1}+\ldots+c_{k} e_{k}+u^{\perp}$, where $c_{1}, \ldots, c_{k}$ are unknown coefficients. Computing scalar products with $e_{j}$ for $\mathfrak{j}=1, \ldots, k$, we get a system of equations to determine $c_{i}$ :

$$
\left(c_{1} e_{1}+\ldots+c_{k} e_{k}+u^{\perp}, e_{j}\right)=\left(v, e_{j}\right)
$$

Due to orthonormality of our basis and the definition of the orthogonal complement, the left hand side of this equation is $\mathbf{c}_{\mathfrak{j}}$. On the other hand, it is easy to see that for every $v$, the vector

$$
v-\left(v, e_{1}\right) e_{1}-\ldots,\left(v, e_{k}\right) e_{k}
$$

is orthogonal to all $e_{j}$, and so to all vectors from U , and so belongs to $\mathrm{U}^{\perp}$.
Corollary 1 (Bessel's inequality). For any vector $v \in \mathrm{~V}$ and any orthonormal system $e_{1}, \ldots$, $e_{k}$ (not necessarily a basis) we have

$$
(v, v) \geqslant\left(v, e_{1}\right)^{2}+\ldots+\left(v, e_{k}\right)^{2}
$$

Proof. Indeed, we can take $\mathrm{U}=\operatorname{span}\left(e_{1}, \ldots, e_{\mathrm{k}}\right)$ and represent $v=u+u^{\perp}$. Then

$$
(v, v)=\left(u+u^{\perp}, u+u^{\perp}\right)=(u, u)+\left(u^{\perp}, u^{\perp}\right)
$$

because $\left(u, u^{\perp}\right)=0$, so

$$
|v|^{2}=|u|^{2}+\left|u^{\perp}\right|^{2} \geqslant|u|^{2}=\left(u, e_{1}\right)^{2}+\ldots+\left(u, e_{k}\right)^{2}=\left(v, e_{1}\right)^{2}+\ldots+\left(v, e_{k}\right)^{2} .
$$

