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Dr. Vladimir Dotsenko (Vlad)

Lecture 8

An application of Bessel’s inequality

Recall that last time we proved Bessel’s inequality: For any vector v ∈ V and any orthonormal system e1,
. . . , ek (not necessarily a basis) we have

(v, v) > (v, e1)
2 + . . .+ (v, ek)

2.

Let us consider the Euclidean space of all continuous functions on [−1, 1] with the scalar product

(f(t), g(t)) =

∫1
−1

f(t)g(t)dt.

It is easy to see that the functions

e0 =
1√
2
, e1 = cosπt, f1 = sinπt, . . . , en = cosπnt, fn = sinπnt

form an orthonormal system there. Consider the function h(t) = t. We have

(h(t), h(t)) =
2

3
,

(h(t), e0) = 0,

(h(t), ek) = 0,

(h(t), fk) =
2(−1)k+1

kπ
,

(the latter integral requires integration by parts to compute it), so Bessel’s inequality implies that

2

3
>
4

π2
+

4

4π2
+

4

9π2
+ . . .+

4

n2π2
,

which can be rewritten as
π2

6
> 1+

1

4
+
1

9
+ . . .+

1

n2
.

Actually
∞∑
k=1

1
k2 = π2

6
, which was first proved by Euler. We are not able to establish it here, but it is worth

mentioning that Bessel’s inequality gives a sharp bound for this sum.

Extremal properties of eigenvectors of symmetric matrices

Our next goal is to progress with linear transformations. Earlier, we mentioned that we have to use com-
plex numbers as scalars to ensure that linear transformations have eigenvectors. Today, we shall make an
exception, and explore the case when we can ensure existence of eigenvectors even for real scalars.
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Definition 1. A matrix A is said to be symmetric if it is equal to its transpose: AT = A.

Our goal today is to prove the following theorem:

Theorem 1. Every symmetric matrix A with real coefficients has a real eigenvalue, and an a eigenvector
with real coordinates.

Proof. As usual in mathematics, we shall find that it is easier to prove a bit more than the theorem actually
states. Let us view the given n× n-matrix A as a linear transformation of Rn, equip Rn with the standard
scalar product, and consider the function g on Rn defined as

g(x) = (Ax, x).

If x has coordinates x1, . . . , xn, then

(Ax, x) = (a11x1 + a12x2 + · · ·+ a1nxn)x1 + · · ·+ (an1x1 + an2x2 + · · ·+ annxn)xn =

= a11x
2
1 + 2a12x1x2 + · · ·+ 2a1nx1xn + a22x

2
2 + 2a23x2x3 + · · ·+ annx2n.

Let us consider the function g(x) on the unit sphere |x| = 1. This function is continuous, and a continuous
function reaches its maximal and minimal value on any compact (closed and bounded) set in Rn. Therefore,
for all x with |x| = 1 we have m 6 g(x) 6 M for some m and M, and these inequalities become equalities
for some x. Now, note that for x 6= 0 we have

g(x) = (Ax, x) =

(
A|x|

1

|x|
x, |x|

1

|x|
x

)
= |x|2

(
A
1

|x|
x,
1

|x|
x

)
,

and the vector 1
|x|
x is of length 1 for each x 6= 0, because

(
1
|x|
x, 1

|x|
x
)
= 1

|x|2
(x, x) = 1. Therefore, for each

x 6= 0 we have
m(x, x) = m|x|2 6 g(x) 6M|x|2 =M(x, x),

and by inspection this holds for x = 0 also. In particular, this implies that

g(x) −M(x, x) 6 0

for all x, so the values of x where g(x) =M(x, x) are solutions to the local maximum problem for the function
f(x) = g(x)−M(x, x). This means that the gradient of f(x) must be equal to zero. By examining the formula

f(x) = (Ax, x) −M(x, x) =

= (a11x1 + a12x2 + · · ·+ a1nxn)x1 + · · ·+ (an1x1 + an2x2 + · · ·+ annxn)xn −M(x21 + · · ·+ x2n) =
= (a11 −M)x21 + 2a12x1x2 + · · ·+ 2a1nx1xn + (a22 −M)x22 + 2a23x2x3 + · · ·+ (ann −M)x2n,

we note that (recall that aij = aji for all i, j)

∂f

∂x1
= 2(a11 −M)x1 + 2a12x2 + · · ·+ 2a1nxn,

∂f

∂x2
= 2a12x1 + 2(a22 −M)x2 + · · ·+ 2a2nxn,

. . .

∂f

∂xn
= 2a1nx1 + 2a2nx2 + · · ·+ 2(ann −M)xn.

Therefore, the gradient of f vanishes at x if and only if (A −M · I)x = 0, that is x is an eigenvector of A
with the eigenvalue M.

2


