1212: Linear Algebra II

Dr. Vladimir Dotsenko (Vlad)

Lecture 9

Diagonalisation of real symmetric matrices

Yesterday we proved that every real symmetric matrix A has a real eigenvector $v \in \mathbb{R}^n$, so that Av = cv for some $c \in \mathbb{R}$.

Theorem 1. For a real symmetric matrix, there exists a basis of eigenvectors that is orthonormal with respect to the standard scalar product on \mathbb{R}^n .

Proof. We begin the proof of a very useful observation which we shall use several times. Namely for two vectors x and y, the scalar product (x, y) can be identified with the 1×1 -matrix $y^T \cdot x$. Therefore, for every matrix B we have

$$(Bx, y) = y^{\mathsf{T}}Bx = (B^{\mathsf{T}}y)^{\mathsf{T}}x = (x, B^{\mathsf{T}}y).$$

In particular, for B = A, we have (Ax, y) = (x, Ay). This is very useful, because it allows to generalise the notion of a symmetric matrix to that of a symmetric linear transformation of a Euclidean vector space, that is the transformation A for which (Ax, y) = (x, Ay) for all vectors x and y. (If we introduce a coordinate system corresponding to an orthonormal basis, the vector space gets identified with \mathbb{R}^n with the usual scalar product, and a symmetric linear transformation is represented by a symmetric matrix).

Let us proceed with the proof. Consider a real eigenvector v of A, and consider the vector space $U = \operatorname{span}(v)^{\perp}$. We have $V = \operatorname{span}(V) \oplus U$, so $\dim(U) = \dim(V) - 1$. Let us show that U is an invariant subspace of A. Let $u \in U$, so that (u,v) = 0, and let us show that (Au,v) = 0. We have (Au,v) = (u,Av) = (u,cv) = c(u,v) = 0. Therefore, U is an invariant subspace; the scalar product of V makes it an Euclidean space, and A is a symmetric linear transformation of that space. It follows by induction on dimension that the theorem holds.

Example 1. For the transformation whose matrix relative to the standard orthonormal (with respect to the standard scalar product) basis of \mathbb{R}^4 is

$$\begin{pmatrix} 7 & 1 & -1 & -3 \\ 1 & 7 & -3 & -1 \\ -1 & -3 & 7 & 1 \\ -3 & -1 & 1 & 7 \end{pmatrix},$$

let us find an orthonormal basis of eigenvectors.

The eigenvalues of this matrix are 4, 8, and 12. Orthonormal basis of eigenvectors:

$$\frac{1}{\sqrt{2}}\begin{pmatrix}0\\1\\1\\0\end{pmatrix}, \frac{1}{\sqrt{2}}\begin{pmatrix}1\\0\\0\\1\end{pmatrix}, \frac{1}{2}\begin{pmatrix}-1\\1\\-1\\1\end{pmatrix}, \frac{1}{2}\begin{pmatrix}-1\\-1\\1\\1\end{pmatrix}.$$

It is not unique; one can choose an arbitrary orthonormal basis in the plane spanned by the first two of them.

Note that eigenvectors corresponding to different eigenvalues are automatically orthogonal:

$$c_1(v_1, v_2) = (c_1v_1, v_2) = (Av_1, v_2) = (v_1, Av_2) = (v_1, c_2v_2) = c_2(v_1, v_2),$$

which for $c_1 \neq c_2$ implies that $(v_1, v_2) = 0$. Therefore, the only things we need to do is normalise the eigenvectors for the eigenvalues 8 and 12, since each of these has a one-dimensional space of eigenvectors, and find an orthonormal basis of the solution set of (A - 4I)x = 0, which can be obtained from any basis of that space by Gram–Schmidt orthogonalisation.

Orthogonal matrices

Definition 1. An $n \times n$ -matrix A is said to be orthogonal if $A^T A = I$. (Or, equivalently, if $A^T = A^{-1}$).

Note that another way to state the same is to remark that the columns of A form an orthonormal basis. Indeed, the entries of $A^T A$ are pairwise scalar products of columns of A.

Theorem 2. A matrix A is orthogonal if and only if it does not change the scalar product, that is for all $x, y \in \mathbb{R}^n$ we have

$$(\mathbf{A}\mathbf{x},\mathbf{A}\mathbf{y})=(\mathbf{x},\mathbf{y}).$$

Proof. As we proved earlier, $(Ax, Ay) = (x, A^TAy)$. Clearly, $(x, A^TAy) = (x, y)$ for all x, y if and only if $(x, (A^TA - I)y) = 0$ for all x, y, and the latter happens only for $A^TA - I = 0$.

This latter result, again, has the advantage of being coordinate-independent: it allows to define an orthogonal linear transformation of an arbitrary Euclidean space as a transformation for which (Ax, Ay) = (x, y)for all vectors x, y. This means that such a transformation preserves geometric notions like lengths and angles between vectors.

Comparing determinants of $A^{\mathsf{T}}A$ and I, we conclude that $\det(A)^2 = 1$, so $\det(A) = \pm 1$. Intuitively, orthogonal matrices with $\det(A) = 1$ are transformations that can distinguish between left and right, or clockwise and counterclockwise (like rotations), and orthogonal matrices with $\det(A) = -1$ are transformations that swap clockwise with counterclockwise (like mirror symmetry).

Example 2. Let A be an orthogonal 2×2 -matrix with $\det(A) = 1$. We have $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a^2 + c^2 = 1$, $b^2 + d^2 = 1$, ab + cd = 0. There exist some angle α such that $a = \cos \alpha$, $c = \sin \alpha$, and the vector $\begin{pmatrix} b \\ d \end{pmatrix}$ is an orthogonal vector of length 1, so $\begin{pmatrix} b \\ d \end{pmatrix} = \pm \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}$. Because of the determinant condition,

$$\mathsf{A} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix},$$

which is the matrix of the rotation through α about the origin.