Solutions to midterm test

1. (a) A linear map from a vector space V to a vector space W is a function $\varphi: \mathrm{V} \rightarrow \mathrm{W}$ satisfying the conditions $\varphi\left(v_{1}+v_{2}\right)=\varphi\left(v_{1}\right)+\varphi\left(v_{2}\right)$ and $\varphi(c \cdot v)=c \cdot \varphi(v)$ for all vectors v, v_{1}, v_{2} and all scalars c .

A linear transformation of a vector space V is a linear map from V to V .
A subspace U of a vector space V is said to be invariant under a linear transformation φ, if $\varphi(\mathrm{U}) \subset \mathrm{U}$, that is for all $\mathfrak{u} \in \mathrm{U}, \varphi(\mathfrak{u}) \in \mathrm{U}$.
(b) Solution: denote these vectors by v_{1} and v_{2}; we have $A v_{1}=\left(\begin{array}{c}-7 \\ 0 \\ 21 \\ -7\end{array}\right)$ and $A v_{2}=\left(\begin{array}{c}-1 \\ -4 \\ -25 \\ 11\end{array}\right)$.

Our subspace U is invariant if the image of every vector is again in U ; it is enough to check that the images of ν_{1} and v_{2} are in U , so we have to find out whether or not $\mathcal{A} \nu_{i}$ can be represented as combinations of v_{1} and v_{2}. Solving the corresponding systems of equations, we get $A v_{1}=7 v_{1}+7 v_{2}$, $A v_{2}=-7 v_{1}-3 v_{2}$, so U is invariant.
2. (a) A bilinear form on a real vector V is a function $\mathrm{f}: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}$ satisfying the conditions $\mathrm{f}\left(v_{1}+v_{2}, w\right)=\mathrm{f}\left(v_{1}, w\right)+\mathrm{f}\left(v_{2}, w\right), \mathrm{f}\left(v, w_{1}+w_{2}\right)=\mathrm{f}\left(v, w_{1}\right)+\mathrm{f}\left(v, w_{2}\right), \mathrm{f}(\mathrm{c} \cdot v, w)=\mathrm{c} \mathrm{f}(v, w)=\mathrm{f}(v, \mathrm{c} \cdot w)$ for all vectors $v, v_{1}, v_{2}, w, w_{1}, w_{2}$, and all scalars c .

A symmetric bilinear form f is said to be positive definite if $\mathrm{f}(v, v)>0$ for $v \neq 0$.
(b) The associated bilinear form has the matrix

$$
\left(\begin{array}{ccc}
3 & a & 1-a \\
a & a+2 & a \\
1-a & a & 3
\end{array}\right)
$$

By Sylvester's criterion, Q is positive definite if and only is the top left corner determinants $\Delta_{1}, \Delta_{2}, \Delta_{3}$ are positive. We have $\Delta_{1}=3, \Delta_{2}=3 a+6-a^{2}, \Delta_{3}=-3 a^{3}-4 a^{2}+12 a+16=-(a-2)(a+2)(3 a+4)$. We have $\Delta_{2}>0$ for $\frac{3-\sqrt{33}}{2}<a<\frac{3+\sqrt{33}}{2}$, and $\Delta_{3}>0$ for $a<-2$ and for $-4 / 3<a<2$. We have $-2<\frac{3-\sqrt{33}}{2}<-4 / 3$, and $2<\frac{3+\sqrt{33}}{2}$, so the answer is $-4 / 3<a<2$.
3. (a) A Euclidean vector space is a vector space equipped with a symmetric positive definite bilinear form. (The value of that form on vectors v and w is denoted by (v, w)). A basis e_{1}, \ldots, e_{n} of V is said to be orthogonal if $\left(e_{i}, e_{j}\right)=0$ for $\mathfrak{i} \neq \mathfrak{j}$. An orthogonal basis is said to be orthonormal if in addition $\left(e_{i}, e_{i}\right)=1$ for all $i=1, \ldots, n$.
(b) Assembling these vectors in a matrix, we obtain the matrix $\left(\begin{array}{ccc}-1 & 0 & 1 \\ 0 & -2 & 1 \\ 2 & 3 & 4\end{array}\right)$, whose determinant is equal to 15 , so it is invertible, and hence the columns of this matrix form a basis.
(c) We compute

$$
e_{1}=f_{1}, e_{2}=f_{2}-\frac{\left(e_{1}, f_{2}\right)}{\left(e_{1}, e_{1}\right)} e_{1}, e_{3}=f_{3}-\frac{\left(e_{1}, f_{3}\right)}{\left(e_{1}, e_{1}\right)} e_{1}-\frac{\left(e_{2}, f_{3}\right)}{\left(e_{2}, e_{2}\right)} e_{2}
$$

that is

$$
e_{1}=\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right), e_{2}=\left(\begin{array}{c}
6 / 5 \\
-2 \\
3 / 5
\end{array}\right), e_{3}=\left(\begin{array}{c}
60 / 29 \\
45 / 29 \\
30 / 29
\end{array}\right)
$$

