MA 1212: Linear Algebra II
Tutorial problems, February 12, 2015

1. For the matrix $\left(\begin{array}{ccc}3 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1\end{array}\right)$ of a certain bilinear form, compute the determinants $\Delta_{1}, \Delta_{2}, \Delta_{3}$, and determine the signature of the corresponding quadratic form.
2. Use the Sylvester's criterion to find all values of the parameter a for which the quadratic form $(18+a) x_{1}^{2}+3 x_{2}^{2}+a x_{3}^{2}+10 x_{1} x_{2}-(8+2 a) x_{1} x_{3}-4 x_{2} x_{3}$ on \mathbb{R}^{3} is positive definite.
3. Compute the eigenvalues of the matrix $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$, and determine the signature of the quadratic form

$$
q\left(x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}\right)=x_{1} x_{2}+x_{2} x_{3} .
$$

4. Let

$$
\varphi\left(x_{1}, x_{2}\right)=\sin ^{2}\left(x_{1}-x_{2}\right)-e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}} .
$$

Furthermore, let A be the symmetric 2×2-matrix with entries $a_{i j}=\frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}}(0,0,0)$.
(a) Write down the matrix A.
(b) Determine all values of the parameter c for which the corresponding quadratic form is positive definite.
(c) Does φ have a local minimum at the origin $(0,0)$ for $c=-3 / 5$?

