MA 1212: Linear Algebra II
Tutorial problems, March 26, 2015

1. The sequence a_{1}, a_{2}, \ldots is defined recursively: $a_{n+2}=8 a_{n+1}-16 a_{n}$, $a_{0}=1, a_{1}=1$. Find an explicit formula for a_{n}.
2. Do the following two matrices represent the same linear transformations relative to different bases? Explain your answer. (Hint: two matrices represent the same linear transformations relative to different bases if their Jordan normal forms are the same; note that you only need to determine the Jordan normal form (sizes of blocks for various eigenvalues), and not a Jordan basis).
(a) $A=\left(\begin{array}{ccc}0 & 7 & 1 \\ -1 & 4 & 1 \\ 0 & 3 & 1\end{array}\right)$;
(b) $\mathrm{B}=\left(\begin{array}{lll}-3 & 5 & 5 \\ -1 & 3 & 1 \\ -3 & 3 & 5\end{array}\right)$.
3. Assume that for a $\mathfrak{n} \times \mathfrak{n}$-matrix A with real matrix elements we have $A^{2}=-I$. Prove that $\operatorname{tr} A=0$.
