MA 1212: Linear Algebra II Tutorial problems, January 22, 2015

1. (a) The reduced column echelon form of the matrix whose columns are the given vectors is

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4/7 & 1/7 & -1/7 \end{pmatrix}$$

so the columns of this matrix are linearly independent, and either the original vectors or the columns of the reduced column echelon form can be taken for a basis.

(b) The reduced column echelon form of the matrix whose columns are the given vectors is

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -7/5 & -6/5 & 13/5 & 0 \end{pmatrix},$$

so the dimension of the span of the column space of this matrix is 3, and the nonzero columns of the reduced column echelon form can be taken for a basis.

2. The intersection is described by the system of equations

$$c_1e_1 + c_2e_2 + c_3e_3 - c_4f_1 - c_5f_2 - c_6f_3 = 0$$

where e_1, e_2, e_3 are columns of the reduced column echelon form for the first matrix, f_1, f_2, f_3, f_4 are the nonzero columns of the reduced column echelon form for the second matrix. The matrix of this system is

$$\begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 4/7 & 1/7 & -1/7 & 7/5 & 6/5 & -13/5 \end{pmatrix}$$

and it reduced row echelon form is

$$\begin{pmatrix} 1 & 0 & 0 & 47/69 & -32/23 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 47/69 & -32/23 \end{pmatrix}$$

so c_5 and c_6 are free variables. Setting $c_5 = 1$, $c_6 = 0$, we obtain $c_4 = -47/69$; setting $c_5 = 0$, $c_6 = 1$, we obtain $c_4 = 32/23$. The corresponding basis vectors

$$c_4f_1 + c_5f_2 + c_6f_3$$
 are, respectively, $\begin{pmatrix} -47/69\\1\\0\\-17/69 \end{pmatrix}$ and $\begin{pmatrix} 32/23\\0\\1\\15/23 \end{pmatrix}$.

3. For $U = \operatorname{span}(v_1, v_2)$ to be invariant, it is necessary and sufficient to have $\varphi(v_1), \varphi(v_2) \in U$. Indeed, this condition is necessary because we must have $\varphi(U) \subset U$, and it is sufficient because each vector of U is a linear combination of v_1 and v_2 .

We have
$$\varphi(v_1) = Av_1 = \begin{pmatrix} -3\\ 8\\ -8 \end{pmatrix}$$
 and $\varphi(v_2) = Av_2 = \begin{pmatrix} -1\\ 8\\ -8 \end{pmatrix}$. It just

remains to see if there are scalars x, y such that $\varphi(v_1) = xv_1 + yv_2$ and scalars z, t such that $\varphi(v_2) = zv_1 + tv_2$. Solving the corresponding systems of linear equations, we see that there are solutions: $\varphi(v_1) = -3v_1 + 5v_2$ and $\varphi(v_2) = -v_1 + 7v_2$. Therefore, this subspace is invariant.