MA 1212: Linear Algebra II

Tutorial problems, January 22, 2015

1. (a) The reduced column echelon form of the matrix whose columns are the given vectors is

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
4 / 7 & 1 / 7 & -1 / 7
\end{array}\right)
$$

so the columns of this matrix are linearly independent, and either the original vectors or the columns of the reduced column echelon form can be taken for a basis.
(b) The reduced column echelon form of the matrix whose columns are the given vectors is

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-7 / 5 & -6 / 5 & 13 / 5 & 0
\end{array}\right),
$$

so the dimension of the span of the column space of this matrix is 3 , and the nonzero columns of the reduced column echelon form can be taken for a basis.
2. The intersection is described by the system of equations

$$
c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3}-c_{4} f_{1}-c_{5} f_{2}-c_{6} f_{3}=0
$$

where e_{1}, e_{2}, e_{3} are columns of the reduced column echelon form for the first matrix, $f_{1}, f_{2}, f_{3}, f_{4}$ are the nonzero columns of the reduced column echelon form for the second matrix. The matrix of this system is

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 \\
4 / 7 & 1 / 7 & -1 / 7 & 7 / 5 & 6 / 5 & -13 / 5
\end{array}\right)
$$

and it reduced row echelon form is

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 47 / 69 & -32 / 23 \\
0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 47 / 69 & -32 / 23
\end{array}\right)
$$

so c_{5} and c_{6} are free variables. Setting $c_{5}=1, c_{6}=0$, we obtain $c_{4}=-47 / 69$; setting $c_{5}=0, c_{6}=1$, we obtain $c_{4}=32 / 23$. The corresponding basis vectors $c_{4} f_{1}+c_{5} f_{2}+c_{6} f_{3}$ are, respectively, $\left(\begin{array}{c}-47 / 69 \\ 1 \\ 0 \\ -17 / 69\end{array}\right)$ and $\left(\begin{array}{c}32 / 23 \\ 0 \\ 1 \\ 15 / 23\end{array}\right)$.
3. For $\mathrm{U}=\operatorname{span}\left(v_{1}, v_{2}\right)$ to be invariant, it is necessary and sufficient to have $\varphi\left(v_{1}\right), \varphi\left(v_{2}\right) \in \mathrm{U}$. Indeed, this condition is necessary because we must have $\varphi(\mathrm{U}) \subset \mathrm{U}$, and it is sufficient because each vector of U is a linear combination of v_{1} and v_{2}.

We have $\varphi\left(v_{1}\right)=A \nu_{1}=\left(\begin{array}{c}-3 \\ 8 \\ -8\end{array}\right)$ and $\varphi\left(v_{2}\right)=A \nu_{2}=\left(\begin{array}{c}-1 \\ 8 \\ -8\end{array}\right)$. It just remains to see if there are scalars x, y such that $\varphi\left(v_{1}\right)=x v_{1}+y v_{2}$ and scalars z, t such that $\varphi\left(v_{2}\right)=z v_{1}+\mathrm{t} v_{2}$. Solving the corresponding systems of linear equations, we see that there are solutions: $\varphi\left(\nu_{1}\right)=-3 v_{1}+5 v_{2}$ and $\varphi\left(v_{2}\right)=-v_{1}+7 v_{2}$. Therefore, this subspace is invariant.

