MA 1212: Linear Algebra II

Tutorial problems, January 29, 2015

1. First we make this set into a set of orthogonal vectors. We put

$$
\begin{gathered}
e_{1}=f_{1}=\left(\begin{array}{l}
1 \\
3 \\
3
\end{array}\right), \\
e_{2}=f_{2}-\frac{\left(e_{1}, f_{2}\right)}{\left(e_{1}, e_{1}\right)} e_{1}=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right), \\
e_{3}=f_{3}-\frac{\left(e_{1}, f_{3}\right)}{\left(e_{1}, e_{1}\right)} e_{1}-\frac{\left(e_{2}, f_{3}\right)}{\left(e_{2}, e_{2}\right)} e_{2}=\left(\begin{array}{c}
12 / 19 \\
-2 / 19 \\
-2 / 19
\end{array}\right) .
\end{gathered}
$$

To conclude, we normalise the vectors, obtaining the answer

$$
\frac{1}{\sqrt{19}}\left(\begin{array}{l}
1 \\
3 \\
3
\end{array}\right), \quad \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right), \quad \frac{1}{\sqrt{38}}\left(\begin{array}{c}
6 \\
-1 \\
-1
\end{array}\right)
$$

2. This formula is bilinear and symmetric by inspection. Also, if we put $x_{1}=x_{2}$ and $y_{1}=y_{2}$, we obtain $x_{1}^{2}+x_{1} y_{1}+y_{1}^{2}=\left(x_{1}+\frac{1}{2} y_{1}\right)^{2}+\frac{3}{4} y_{1}^{2}$, and we see that this can only be equal to zero for $x_{1}=y_{1}=0$, so the positivity holds as well. Let us apply the Gram-Schmidt process to the standard unit vectors. This means that we would like to replace e_{2} by $e_{2}-\frac{\left(e_{1}, e_{2}\right)}{\left(e_{1}, e_{1}\right)} e_{1}=\binom{-1 / 2}{1}$. It remains to normalise these vectors, obtaining

$$
\binom{1}{0}, \quad\binom{-1 / \sqrt{3}}{2 \sqrt{3}}
$$

3. We first orthogonalise these vectors, noting that $\int_{-1}^{1} f(t) d t$ is equal to 0 if $f(t)$ is an odd function (this shows that our computations are actually quite easy, because even powers of t are automatically orthogonal to odd
powers):

$$
\begin{gathered}
e_{1}=1, \\
e_{2}=t-\frac{(1, \mathrm{t})}{(1,1)} 1=\mathrm{t}, \\
e_{3}=\mathrm{t}^{2}-\frac{\left(1, \mathrm{t}^{2}\right)}{(1,1)} 1-\frac{\left(\mathrm{t}, \mathrm{t}^{2}\right)}{(\mathrm{t}, \mathrm{t})} \mathrm{t}=\mathrm{t}^{2}-\frac{1}{3}, \\
e_{4}=\mathrm{t}^{3}-\frac{\left(1, \mathrm{t}^{3}\right)}{(1,1)} 1-\frac{\left(\mathrm{t}, \mathrm{t}^{3}\right)}{(\mathrm{t}, \mathrm{t})} \mathrm{t}-\frac{\left(\mathrm{t}^{2}-\frac{1}{3}, \mathrm{t}^{3}\right)}{\left(\mathrm{t}^{2}-\frac{1}{3}, \mathrm{t}^{2}-\frac{1}{3}\right)}\left(\mathrm{t}^{2}-\frac{1}{3}\right)=\mathrm{t}^{3}-\frac{3}{5} .
\end{gathered}
$$

To conclude, we normalise these vectors, obtaining

$$
\frac{1}{\sqrt{2}}, \frac{\sqrt{3} t}{\sqrt{2}}, \frac{\sqrt{5}\left(3 \mathrm{t}^{2}-1\right)}{2 \sqrt{2}}, \frac{\sqrt{7}\left(5 \mathrm{t}^{3}-3 \mathrm{t}\right)}{2 \sqrt{2}} .
$$

