MA 1212: Linear Algebra II
Tutorial problems, February 12, 2015

1. Ay =3, A =2, A; =—7,, so by Jacobi’s theorem the signature can
be read from the sequence 1/3, 3/2, —2/7; it is (2,1,0).
2. The matrix of the corresponding bilinear form is

18+a 5 —a-—4
A = 5 3 -2
—a—4 -2 a

We have Ay =184+ a, Ay =3a+ 29, A3 =21a —40. All these numbers are

positive if and only if

a>2
21°

010
3. The characteristic polynomial of the matrix [ 1 0 1| is 2t—t3 = t(2—t?),
010

so the eigenvalues of this matrix are 0 and ++1/2. The matrix of the bilinear
form corresponding to the quadratic form

q(xi1er +x2e2 +x3€3) = X1X2 + X2X3

is equal to 1/2 of the matrix in question, so its signature can be read off the
eigenvalues of this matrix, and is (1,1,1).

4. We have
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so the matrix A is

1 —2—2c
—2—2c 1 )

By Sylvester’s criterion, this quadratic form is positive definite if and only

if Ay =1—(2+2c)? > 0 (since A; = 1). We have
T—(2+2)P=(1+2+2c)(1—2—2¢) = (3+2¢)(—1—2c),

so the quadratic form is positive definite for —3/2 < ¢ < —1/2. In particular,
this holds for ¢ = —3/5.



