MA 1212: Linear Algebra II

 Tutorial problems, February 12, 20151. $\Delta_{1}=3, \Delta_{2}=2, \Delta_{3}=-7$, , so by Jacobi's theorem the signature can be read from the sequence $1 / 3,3 / 2,-2 / 7$; it is $(2,1,0)$.
2. The matrix of the corresponding bilinear form is

$$
A=\left(\begin{array}{ccc}
18+a & 5 & -a-4 \\
5 & 3 & -2 \\
-a-4 & -2 & a
\end{array}\right)
$$

We have $\Delta_{1}=18+\mathrm{a}, \Delta_{2}=3 \mathrm{a}+29, \Delta_{3}=21 \mathrm{a}-40$. All these numbers are positive if and only if

$$
a>\frac{40}{21} .
$$

3. The characteristic polynomial of the matrix $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ is $2 t-t^{3}=t\left(2-t^{2}\right)$, so the eigenvalues of this matrix are 0 and $\pm \sqrt{2}$. The matrix of the bilinear form corresponding to the quadratic form

$$
q\left(x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}\right)=x_{1} x_{2}+x_{2} x_{3}
$$

is equal to $1 / 2$ of the matrix in question, so its signature can be read off the eigenvalues of this matrix, and is $(1,1,1)$.
4. We have

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial x_{1}}=2 \sin \left(x_{1}-x_{2}\right) \cos \left(x_{1}-x_{2}\right)-\left(x_{1}+2 c x_{2}\right) e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}}= \\
& =\sin 2\left(x_{1}-x_{2}\right)-\left(x_{1}+2 c x_{2}\right) e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}}
\end{aligned} \begin{array}{r}
\frac{\partial \varphi}{\partial x_{2}}=-2 \sin \left(x_{1}-x_{2}\right) \cos \left(x_{1}-x_{2}\right)-\left(2 c x_{1}+x_{2}\right) e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}}= \\
=-\sin 2\left(x_{1}-x_{2}\right)-\left(2 c x_{1}+x_{2}\right) e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}}
\end{array}
$$

and

$$
\begin{aligned}
\frac{\partial^{2} \varphi}{\partial x_{1}^{2}} & =2 \cos 2\left(x_{1}-x_{2}\right)-e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}}-\left(x_{1}+2 c x_{2}\right)^{2} e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}} \\
\frac{\partial^{2} \varphi}{\partial x_{1} \partial x_{2}} & =-2 \cos 2\left(x_{1}-x_{2}\right)-2 c e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}}-\left(x_{1}+2 c x_{2}\right)\left(2 c x_{1}+x_{2}\right) e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}}, \\
\frac{\partial^{2} \varphi}{\partial x_{2}^{2}} & =2 \cos 2\left(x_{1}-x_{2}\right)-e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}}-\left(2 c x_{1}+x_{2}\right)^{2} e^{\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)+2 c x_{1} x_{2}},
\end{aligned}
$$

so the matrix \mathcal{A} is

$$
\left(\begin{array}{cc}
1 & -2-2 c \\
-2-2 c & 1
\end{array}\right)
$$

By Sylvester's criterion, this quadratic form is positive definite if and only if $\Delta_{2}=1-(2+2 c)^{2}>0\left(\right.$ since $\left.\Delta_{1}=1\right)$. We have

$$
1-(2+2 c)^{2}=(1+2+2 c)(1-2-2 c)=(3+2 c)(-1-2 c)
$$

so the quadratic form is positive definite for $-3 / 2<c<-1 / 2$. In particular, this holds for $\mathrm{c}=-3 / 5$.

