MA 1111: Linear Algebra I
Selected answers/solutions to the assignment due October 8, 2015

1. (a) No. Otherwise the vectors pointing from the point $(0,1)$ to these points, that is $(5,8)=(5,9)-(0,1)$ and $(8,13)=(8,14)-(0,1)$, would have been proportional, which is not the case. (But they are very close to being proportional, so drawing this on a grid paper might lead to a wrong answer).
(b) Yes. Computing the vectors along the sides of that triangle, we get the vectors $(3,4)=(1,1)-(-2,-3),(8,-6)=(9,-5)-(1,1)$, and $(11,-2)=(9,-5)-(-2,-3)$. The scalar product of the first two is $(3,4) \cdot(8,-6)=24-24=0$, so the cosine of the angle between them is 0 , and these vectors form a right angle.
2. $(-2,0),(0,-2)$, or $(2,4)$. In general, if \mathbf{a}, \mathbf{b}, and \mathbf{c} are given points, then the fourth point is one of $\mathbf{a}+\mathbf{b}-\mathbf{c}, \mathbf{b}+\mathbf{c}-\mathbf{a}$, and $\mathbf{c}+\mathbf{a}-\mathbf{b}$. One of possible ideas is to use the parallelogram rule carefully. Another idea: the midpoint of the segment connecting $\left(a_{1}, a_{2}\right)$ to $\left(b_{1}, b_{2}\right)$ has coordinates $\left(\frac{a_{1}+b_{1}}{2}, \frac{a_{2}+b_{2}}{2}\right)$; use the fact that the center of a parallelogram is the midpoint of each of its diagonals.
3. (a) No. It is not linear in \mathbf{v}, since

$$
\begin{aligned}
\left(\mathbf{u} \cdot\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)\right)\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)-\left(\mathbf{u} \cdot \mathbf{v}_{1}\right) \mathbf{v}_{1}-\left(\mathbf{u} \cdot \mathbf{v}_{2}\right) \mathbf{v}_{2} & = \\
& \left(\mathbf{u} \cdot \mathbf{v}_{1}\right) \mathbf{v}_{2}+\left(\mathbf{u} \cdot \mathbf{v}_{2}\right) \mathbf{v}_{1}
\end{aligned}
$$

That latter expression is nonzero for some choices of $\mathbf{u}, \mathbf{v}_{1}, \mathbf{v}_{2}$. For example, if $\mathbf{u}=\mathbf{v}_{1}=\mathbf{v}_{2}=\mathbf{i}$, the result is $2 \mathbf{i}$.
(b) As we established in class, the cross product of two vectors is perpendicular to both of them, so $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}=0$ always. As such, it is a multilinear expression: $0+0=0$.
4. We have $|\mathbf{b}|=\sqrt{2^{2}+1}=\sqrt{5},|\mathbf{c}|=\sqrt{1+3^{2}}=\sqrt{10}$, and $\mathbf{b} \cdot \mathbf{c}=7$, so we have $\cos \varphi=\frac{7}{\sqrt{50}}, \varphi=\cos ^{-1} \frac{7}{\sqrt{50}}$.

We also have $|\mathbf{u}|=\sqrt{9}=3,|\mathbf{v}|=\sqrt{38} \mid$, and $\mathbf{u} \cdot \mathbf{v}=18$, so $\cos \varphi=\frac{18}{3 \sqrt{38}}=\frac{6}{\sqrt{38}}$.
5. (a) This area, as we know, is equal to the length of the vector product of these vectors. We have $\mathbf{u} \times \mathbf{v}=(4,-1,-1)$, so the area is $\sqrt{4^{2}+1+1}=\sqrt{18}=3 \sqrt{2}$. (b) This area is the absolute value of $\mathbf{w} \cdot(\mathbf{u} \times \mathbf{v})$, that is $|12-1|=11$.
6. Note that the vectors $\mathbf{v}-\mathbf{u}=(1,1,3)$ and $\mathbf{w}-\mathbf{u}=(2,-2,-1)$ are in this plane, so their cross product is perpendicular to this plane. We have

$$
(\mathbf{v}-\mathbf{u}) \times(\mathbf{w}-\mathbf{u})=(5,7,-4)
$$

This vector is perpendicular to the plane (as is any scalar multiple of it).

