MA 1111: Linear Algebra I
Selected answers/solutions to the assignment due December 17, 2015

1. (a) We have

$$
\binom{b_{n}}{b_{n+1}}=\binom{b_{n}}{3 b_{n}-b_{n-1}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 3
\end{array}\right)\binom{b_{n-1}}{b_{n}},
$$

and iterating that, we get

$$
\binom{b_{n}}{b_{n+1}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 3
\end{array}\right)^{n}\binom{b_{0}}{b_{1}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 3
\end{array}\right)^{n}\binom{0}{1} .
$$

(b) Eigenvalues are roots of $t^{2}-3 t+1=0$, i.e. $\lambda_{1}=\frac{3+\sqrt{5}}{2}, \lambda_{2}=\frac{3-\sqrt{5}}{2}$. The corresponding eigenvectors are $\binom{1}{\lambda_{1}}$ and $\binom{1}{\lambda_{2}}$. Clearly, $C=\left(\begin{array}{cc}1 & 1 \\ \lambda_{1} & \lambda_{2}\end{array}\right)$ is the transition matrix from the basis of standard unit vectors to the basis of eigenvectors. Then in the basis of eigenvectors we obtain the matrix $C^{-1}\left(\begin{array}{cc}0 & 1 \\ -1 & 3\end{array}\right) C=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$, so

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 3
\end{array}\right)^{n}\binom{0}{1}=C\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)^{n} C^{-1}\binom{0}{1}=\binom{\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\lambda_{1}-\lambda_{2}}}{\frac{\lambda_{1}^{n+1}-\lambda_{2}^{n+1}}{\lambda_{1}-\lambda_{2}}}
$$

and

$$
\mathrm{b}_{\mathrm{n}}=\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\lambda_{1}-\lambda_{2}}=\frac{1}{\sqrt{5}}\left(\left(\frac{3+\sqrt{5}}{2}\right)^{n}-\left(\frac{3-\sqrt{5}}{2}\right)^{n}\right)
$$

2. We have $\operatorname{det}\left(A-c I_{3}\right)=-c^{3}+4 c^{2}-5 c+2=-(c-1)^{2}(c-2)$, so the eigenvalues of this matrix are 1 and 2 . Solving the systems of equations $A x=x$ and $A x=2 x$, we see that each solution is proportional to, respectively, $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$, so there is no basis of eigenvectors, and the answer is "no".
3. This can be done by a direct computation: let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then

$$
\begin{aligned}
A^{2}- & \operatorname{tr}(A) \cdot A+\operatorname{det}(A) \cdot I_{2}= \\
& =\left(\begin{array}{cc}
a^{2}+b c & a b+b d \\
a c+c d & d^{2}+b c
\end{array}\right)-\left(\begin{array}{cc}
(a+d) a & (a+d) b \\
(a+d) c & (a+d) d
\end{array}\right)+\left(\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right)=0 .
\end{aligned}
$$

4. Note that $\operatorname{det}\left(A^{3}\right)=(\operatorname{det}(A))^{3}$, so if $A^{3}=0$, then $\operatorname{det}(A)=0$. According to the previous question, we then have $A^{2}-\operatorname{tr}(A) A=0$, so $A^{2}=\operatorname{tr}(A) A$. If $\operatorname{tr}(A)=0$, we conclude that $A^{2}=0$. Otherwise, we have

$$
0=A^{3}=A^{2} \cdot A=\operatorname{tr}(A) A \cdot A=\operatorname{tr}(A) A^{2}=(\operatorname{tr}(A))^{2} \cdot A
$$

which for $\operatorname{tr}(A) \neq 0$ implies $A=0$.

