MA 1111: Linear Algebra I

Selected answers/solutions to the assignment due October 22, 2015

1. (a) $A+B$ and $B A$ are not defined, $A B=\binom{8}{5}$; (b) $A+B$ and $B A$ are not defined, $A B=\binom{7}{2} ;$
(c) $A+B$ is not defined, $B A=\left(\begin{array}{ccc}9 & 1 & 9 \\ 1 & 0 & 2 \\ 15 & 2 & 12\end{array}\right), A B=\left(\begin{array}{ll}7 & 26 \\ 5 & 14\end{array}\right)$;
(d) $A+B=\left(\begin{array}{ll}4 & 8 \\ 2 & 3\end{array}\right), B A=\left(\begin{array}{cc}8 & 16 \\ 3 & 6\end{array}\right), A B=\left(\begin{array}{cc}8 & 12 \\ 4 & 6\end{array}\right)$.
2. The easiest thing to do is to apply the algorithm from the lecture: take the matrix ($A \mid I_{n}$) and bring it to the reduced row echelon form; the result is $\left(I_{n} \mid A^{-1}\right)$ if the matrix is invertible, and has $(R \mid B)$ with $R \neq I_{n}$ otherwise.
(a) $\left(\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right)$ is invertible, the inverse is $\left(\begin{array}{cc}-1 & 3 \\ 1 & -2\end{array}\right)$;
(b) $\left(\begin{array}{ll}6 & 4 \\ 3 & 2\end{array}\right)$ is not invertible, since the reduced row echelon form of $(A \mid I)$ is $\left(\begin{array}{cccc}1 & 2 / 3 & 0 & 1 / 2 \\ 0 & 0 & 1 & -2\end{array}\right)$ so the matrix on the left is not the identity;
(c) $\left(\begin{array}{lll}1 & 1 & 3 \\ 1 & 2 & 0\end{array}\right)$ is not invertible, since in class we proved that only square matrices are invertible;
(d) $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9\end{array}\right)$ is invertible; the inverse is $\left(\begin{array}{ccc}3 & -3 & 1 \\ -5 / 2 & 4 & -3 / 2 \\ 1 / 2 & -1 & 1 / 2\end{array}\right)$.
3. (a) Suppose that A is a $k \times l$-matrix, and B is an $m \times n$-matrix. In order for $A B$ to be defined, we must have $l=m$. In order for $B A$ to be defined, we must have $n=k$. Consequently, the size of matrix $A B$ is $k \times n=n \times n$, and the size of the matrix $B A$ is $\mathfrak{m} \times \mathrm{l}=\mathrm{m} \times \mathrm{m}$, which is exactly what we want to prove.
(b) We have

$$
\begin{aligned}
& \operatorname{tr}(\mathrm{UV})=(\mathrm{UV})_{11}+(\mathrm{UV})_{22}+\ldots+(\mathrm{UV})_{\mathrm{nn}}=\left(\mathrm{U}_{11} \mathrm{~V}_{11}+\mathrm{U}_{12} \mathrm{~V}_{21}+\ldots+\mathrm{U}_{1 n} \mathrm{~V}_{\mathrm{n} 1}\right)+ \\
& \quad\left(\mathrm{U}_{21} \mathrm{~V}_{12}+\mathrm{U}_{22} \mathrm{~V}_{22}+\ldots+\mathrm{U}_{2 n} \mathrm{~V}_{n 2}\right)+\ldots+\left(\mathrm{U}_{n 1} \mathrm{~V}_{1 n}+\mathrm{U}_{n 2} \mathrm{~V}_{2 n}+\ldots+\mathrm{U}_{n n} \mathrm{~V}_{n n}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{tr}(\mathrm{VU})=(\mathrm{VU})_{11}+(\mathrm{VU})_{22}+\ldots+(\mathrm{VU})_{\mathrm{nn}}=\left(\mathrm{V}_{11} \mathrm{U}_{11}+\mathrm{V}_{12} \mathrm{U}_{21}+\ldots+\mathrm{V}_{1 n} \mathrm{U}_{n 1}\right)+ \\
& \quad\left(\mathrm{V}_{21} \mathrm{U}_{12}+\mathrm{V}_{22} \mathrm{U}_{22}+\ldots+\mathrm{V}_{2 n} \mathrm{U}_{\mathrm{n} 2}\right)+\ldots+\left(\mathrm{V}_{n 1} \mathrm{U}_{1 n}+\mathrm{V}_{n 2} \mathrm{U}_{2 n}+\ldots+\mathrm{V}_{n n} \mathrm{U}_{n n}\right),
\end{aligned}
$$

so both traces are actually equal to the sum of all products $U_{i j} V_{j i}$, where i and j range from 1 to n. For the example $U=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), V=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ from class, we have $U V=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $\mathrm{VU}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, so even though these matrices are not equal, their traces are equal.
4. (a) We have $A^{2}=\left(\begin{array}{cc}a^{2}+b c & b(a+d) \\ c(a+d) & d^{2}+b c\end{array}\right)$. (b) Since $A^{2}=I_{2}$, from the previous formula we have $b(a+d)=c(a+d)=0$. If $a+d=0$, we have $\operatorname{tr}(A)=0$, and everything is proved. Otherwise, if $a+d \neq 0$, we have $b=c=0$, so $a^{2}=1=d^{2}$, and either $a=d=1$ or $a=d=-1$ or $a=1, d=-1$ or $a=-1, d=1$. In the first case $A=I$, in the second case $A=-I$, in the remaining two cases $\operatorname{tr}(A)=a+d=0$ (which is contradiction since in this case we assumed $a+d \neq 0$). (c) For example, the matrix $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ works.
5. For example, $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ would work.

