MA 1111: Linear Algebra I

Selected answers/solutions to the assignment due October 29, 2015

1. Let us note that in order for this matrix to be a matrix representing some permutation, we must have $\{\mathrm{k}, \mathrm{l}\}=\{4,6\}$ and $\{\mathfrak{i}, \mathfrak{j}\}=\{2,5\}$. Let us examine the choice $\mathfrak{i}=2, \mathfrak{j}=5$, $k=4, l=6$. The corresponding permutation is $\left(\begin{array}{cccccc}5 & 2 & 4 & 3 & 6 & 1 \\ 4 & 1 & 3 & 2 & 6 & 5\end{array}\right)$; it is even because the total number of inversions in the two rows is 14 (52, 54, 53, 51, 21, 43, 41, 31, 61 in the top row, and $41,43,42,32,65$ in the bottom row). Therefore, for the two choices that correspond to swapping one of the pairs $\mathfrak{i} \leftrightarrow j$ and $k \leftrightarrow l$, the permutation is odd, and for the choice corresponding to swapping both, the permutation is even. Answer: $i=2, j=5, k=4, l=6$, and $i=5, j=2, k=6, l=4$.
2. (a) We have $\operatorname{tr}\left(A^{-1} B A\right)=\operatorname{tr}\left(\left(A^{-1} B\right) A\right)=\operatorname{tr}\left(A\left(A^{-1} B\right)\right)=\operatorname{tr}\left(A A^{-1} B\right)=\operatorname{tr}(B)$.
(b) Assume that A is invertible. Multiplying by A^{-1} on the left, we get $B-A^{-1} B A=I_{n}$. Now, computing traces of both sides gives us $0=n$, a contradiction.
3. (a) Performing elementary row operations, we get

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & -2 \\
1 & 1 & 3 \\
4 & 3 & 1
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 5 \\
0 & 3 & 9
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 5 \\
0 & 0 & -6
\end{array}\right)=-6
$$

(b) Performing elementary row operations, we get

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & -2 & -1 \\
2 & 0 & 3 & -1 \\
4 & 2 & 3 & 1 \\
3 & 0 & 0 & 1
\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & -2 & -1 \\
0 & -2 & 7 & 1 \\
0 & -2 & 11 & 5 \\
0 & -3 & 6 & 4
\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & -2 & -1 \\
0 & -2 & 7 & 1 \\
0 & 0 & 4 & 4 \\
0 & 0 & -9 / 2 & 5 / 2
\end{array}\right)= \\
&=4 / 2 \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & -2 & -1 \\
0 & -2 & 7 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & -9 & 5
\end{array}\right)=2 \operatorname{det}\left(\begin{array}{cccc}
1 & 1 & -2 & -1 \\
0 & -2 & 7 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 14
\end{array}\right)=-56 .
\end{aligned}
$$

4. (a) We have $\operatorname{det}(A)=(2-c)^{2}-1=c^{2}-4 c+3=(c-1)(c-3)$, so A is not invertible for $\mathrm{c}=1$ and for $\mathrm{c}=3$.
(b) Because of multilinearity, we have
$\operatorname{det}(\mathcal{A})=\operatorname{det}\left(\begin{array}{ccc}2 & 1 & 3 \\ -1 & 2 & 0 \\ 1 & 3 & -1\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}2 & 1 & 3 \\ c & c & 4 c \\ 1 & 3 & -1\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}2 & 1 & 3 \\ -1 & 2 & 0 \\ 1 & 3 & -1\end{array}\right)+\operatorname{cdet}\left(\begin{array}{ccc}2 & 1 & 3 \\ 1 & 1 & 4 \\ 1 & 3 & -1\end{array}\right)$.
We compute
$\operatorname{det}\left(\begin{array}{ccc}2 & 1 & 3 \\ -1 & 2 & 0 \\ 1 & 3 & -1\end{array}\right) \stackrel{(1)+3(3)}{=} \operatorname{det}\left(\begin{array}{ccc}5 & 10 & 0 \\ -1 & 2 & 0 \\ 1 & 3 & -1\end{array}\right)=5 \operatorname{det}\left(\begin{array}{ccc}1 & 2 & 0 \\ -1 & 2 & 0 \\ 1 & 3 & -1\end{array}\right) \stackrel{(1)-(2)}{=} 5 \operatorname{det}\left(\begin{array}{ccc}2 & 0 & 0 \\ -1 & 2 & 0 \\ 1 & 3 & -1\end{array}\right)$
concluding with $\operatorname{det}\left(\begin{array}{ccc}2 & 1 & 3 \\ -1 & 2 & 0 \\ 1 & 3 & -1\end{array}\right)=-20$, and

$$
\operatorname{det}\left(\begin{array}{ccc}
2 & 1 & 3 \\
1 & 1 & 4 \\
1 & 3 & -1
\end{array}\right) \stackrel{(1)-2(2),(3)-(2)}{=} \operatorname{det}\left(\begin{array}{ccc}
0 & -1 & -5 \\
1 & 1 & 4 \\
0 & 2 & -5
\end{array}\right) \stackrel{(3)+2(1),(1) \leftrightarrow(2)}{=}-\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 4 \\
0 & -1 & -5 \\
0 & - & -15
\end{array}\right)
$$

concluding with $\operatorname{det}\left(\begin{array}{ccc}2 & 1 & 3 \\ c & c & 4 c \\ 1 & 3 & -1\end{array}\right)=-15 c$. Thus, $\operatorname{det}(\mathcal{A})=-15 c-20$. We have $\operatorname{det}(A)=0$ for $c=-20 / 15=-4 / 3$.
5. Statements $1,2,5$ are true, Statements 3,4 are false.

Indeed, we know from class that a matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$. Since we have $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$, we conclude that $A B$ is invertible if and only if both A and B is invertible, that is Statements 1 and 2. (Statement 2 was also proved directly in class).

For Statement 5, assume that both A and B are invertible. Then, by Statement 2, $A B$ is invertible, which is a contradiction.

As a counterexample to Statement 3, take the matrix $U=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ that we discussed in class. We have $\mathrm{U}^{2}=\mathrm{U} \cdot \mathrm{U}=0$, and $\mathrm{U} \neq 0$.

As a counterexample to Statement 4, take $A=0$ and $B=I_{n}$. Then $A B=0$, but B is invertible.

