MA 1111: Linear Algebra I

Selected answers/solutions to the assignment due November 19, 2015

1. (a) The matrix $A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$ is clearly invertible (its determinant is equal to $-5 \neq 0$), so its reduced row echelon form is I_2 , that reduced row echelon form has a pivot in each row and each column, therefore these vectors span \mathbb{R}^2 , are linearly independent, and form a basis.

(b) The reduced row echelon form of the matrix $A = \begin{pmatrix} -1 & 2 & 7 \\ 2 & 1 & 6 \end{pmatrix}$ is $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 4 \end{pmatrix}$; it has no zero rows, so these vectors span \mathbb{R}^2 ; it has one column without a pivot, so these

vectors are linearly dependent. Consequently, they do not form a basis. $\begin{pmatrix} 1 & 2 & 7 \end{pmatrix}$

2. The reduced row echelon form of the matrix $A = \begin{pmatrix} -1 & 2 & 7 \\ 2 & 1 & 6 \\ 0 & 1 & -1 \end{pmatrix}$ is I₃. Since each

row of I_3 has a pivot, these vectors span \mathbb{R}^3 , and since each column of I_3 has a pivot, these vectors are linearly independent. Therefore, they form a basis.

3. The reduced row echelon form of the matrix $A = \begin{pmatrix} -1 & 2 & 7 \\ 2 & 1 & 6 \\ 1 & 0 & 1 \end{pmatrix}$ is $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{pmatrix}$.

Since the reduced row echelon form has a row with no pivot, these vectors do not span \mathbb{R}^3 , and since there is a column with no pivot, these vectors are not linearly independent. Therefore, of course, they do not form a basis.

4. The determinant of the matrix formed by these vectors is the Vandermonde determinant and hence is not equal to zero. Therefore, the reduced row echelon form of that matrix is I_n , so these vectors are linearly independent, span \mathbb{R}^n , and form a basis.

5. Suppose that

$$c_1(u-2w)+c_2(v+w)+c_3w=0$$

for some coefficients c_1, c_2, c_3 . This can be rewritten as

$$c_1u + c_2v + (-2c_1 + c_2 + c_3)w = 0.$$

Since the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent, we conclude that $\mathbf{c}_1 = \mathbf{0}, \mathbf{c}_2 = \mathbf{0}$, and $-2\mathbf{c}_1 + \mathbf{c}_2 + \mathbf{c}_3 = \mathbf{0}$, which implies $\mathbf{c}_1 = \mathbf{c}_2 = \mathbf{c}_3 = \mathbf{0}$. Hence, the vectors $\mathbf{u} - 2w, \mathbf{v} + w$, and w are linearly independent.