MA 1111: Linear Algebra I

Selected answers/solutions to the assignment due November 26, 2015

1. We have

$$
\begin{gathered}
v=\frac{1}{2}((v+w)-(w-v)), \\
w=\frac{1}{2}((v+w)+(w-v)), \\
u=(u-2 w)+2 w=(u-2 w)+(v+w)+(w-v),
\end{gathered}
$$

so each of the vectors u, v, and w is a linear combination of those new vectors. Since every vector by assumption is a linear combination of u, v, w, we may substitute the linear combinations obtained to conclude that every vector is a linear combination of the new vectors also.
2. (a) Yes. This is the solution set to a homogeneous system of linear equations, and therefore is a subspace as proved in class.
(b) No. For example, this subset is not closed under multiplication by real numbers: if $2 x-y+z=1$, then $2 c x-c y+c z=c \neq 1$ for $c \neq 1$.
(c) No. For example, the vector $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$ belongs to this set, as well as the vector $\left(\begin{array}{c}0 \\ -1 \\ -1\end{array}\right)$, but their sum, the vector $\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ does not belong to U.
3. This system is of the form $A x=0$, where $A=\left(\begin{array}{llll}2 & -4 & 1 & 1 \\ 1 & -2 & 0 & 5\end{array}\right)$. The reduced row echelon form of the matrix A is $\left(\begin{array}{cccc}1 & -2 & 0 & 5 \\ 0 & 0 & 1 & -9\end{array}\right)$, , so x_{2} and x_{4} are free variables, and the general solution corresponding to the parameters $x_{2}=s, x_{4}=t$ is $\left(\begin{array}{c}2 s-5 t \\ s \\ 9 t \\ t\end{array}\right)=s\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right)+\mathrm{t}\left(\begin{array}{c}-5 \\ 0 \\ 9 \\ 1\end{array}\right)$. Therefore we can take $v_{1}=\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right)$ and $v_{2}=\left(\begin{array}{c}-5 \\ 0 \\ 9 \\ 1\end{array}\right)$.
4. The reduced row echelon of this matrix is $\left(\begin{array}{cccc}1 & 0 & -1 & 1 / 3 \\ 0 & 1 & 0 & -1 / 3 \\ 0 & 0 & 0 & 0\end{array}\right)$, so x_{3} and x_{4} are free variables, and the general solution corresponding to the parameters $x_{3}=s, x_{4}=t$ is $\left(\begin{array}{c}s-\frac{1}{3} t \\ \frac{1}{3} t \\ s \\ \mathrm{t}\end{array}\right)=\mathrm{s}\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)+\mathrm{t}\left(\begin{array}{c}-\frac{1}{3} \\ \frac{1}{3} \\ 0 \\ 1\end{array}\right)$. Therefore we can take $v_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)$ and $v_{2}=\left(\begin{array}{c}-\frac{1}{3} \\ \frac{1}{3} \\ 0 \\ 1\end{array}\right)$.
5. (a) We have

$$
x=x+0=x+(v+y)=(x+v)+y=0+y=y .
$$

(b) We have

$$
\mathbf{v}+(-1) \cdot \mathbf{v}=1 \cdot \mathbf{v}+(-1) \cdot \mathbf{v}=(1+(-1)) \cdot \mathbf{v}=0 \cdot \mathbf{v}=0
$$

as proved in class. Similarly, $(-\mathbf{1}) \cdot \mathbf{v}+\mathbf{v}=0$. Since the opposite element, as we just proved, is unique, we have $(-1) \cdot \mathbf{v}=-\mathbf{v}$.

