MA 1111: Linear Algebra I Selected answers/solutions to the assignment due November 26, 2015

1. We have

$$v = \frac{1}{2}((v + w) - (w - v)),$$

$$w = \frac{1}{2}((v + w) + (w - v)),$$

$$u = (u - 2w) + 2w = (u - 2w) + (v + w) + (w - v),$$

so each of the vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} is a linear combination of those new vectors. Since every vector by assumption is a linear combination of \mathbf{u} , \mathbf{v} , \mathbf{w} , we may substitute the linear combinations obtained to conclude that every vector is a linear combination of the new vectors also.

2. (a) Yes. This is the solution set to a homogeneous system of linear equations, and therefore is a subspace as proved in class.

(b) No. For example, this subset is not closed under multiplication by real numbers: if 2x - y + z = 1, then $2cx - cy + cz = c \neq 1$ for $c \neq 1$.

(c) No. For example, the vector
$$\begin{pmatrix} 1\\1\\0 \end{pmatrix}$$
 belongs to this set, as well as the vector $\begin{pmatrix} 0\\-1\\-1 \end{pmatrix}$, but their sum, the vector $\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$ does not belong to U.

3. This system is of the form Ax = 0, where $A = \begin{pmatrix} 2 & -4 & 1 & 1 \\ 1 & -2 & 0 & 5 \end{pmatrix}$. The reduced row echelon form of the matrix A is $\begin{pmatrix} 1 & -2 & 0 & 5 \\ 0 & 0 & 1 & -9 \end{pmatrix}$, so x_2 and x_4 are free variables, and the general solution corresponding to the parameters $x_2 = s$, $x_4 = t$ is $\begin{pmatrix} 2s - 5t \\ s \\ 9t \\ t \end{pmatrix} = s \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} -5 \\ 0 \\ 9 \\ 1 \end{pmatrix}$. Therefore we can take $v_1 = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ and $v_2 = \begin{pmatrix} -5 \\ 0 \\ 9 \\ 1 \end{pmatrix}$. $\begin{pmatrix} 1 & 0 & -1 & 1/3 \end{pmatrix}$

4. The reduced row echelon of this matrix is $\begin{pmatrix} 1 & 0 & -1 & 1/3 \\ 0 & 1 & 0 & -1/3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, so x_3 and x_4 are free variables, and the general solution corresponding to the parameters $x_3 = s$, $x_4 = t$ is

$$\begin{pmatrix} s - \frac{1}{3}t \\ \frac{1}{3}t \\ s \\ t \end{pmatrix} = s \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -\frac{1}{3} \\ \frac{1}{3} \\ 0 \\ 1 \end{pmatrix}.$$
 Therefore we can take $v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$ and $v_2 = \begin{pmatrix} -\frac{1}{3} \\ \frac{1}{3} \\ 0 \\ 1 \end{pmatrix}.$
5. (a) We have

$$\mathbf{x} = \mathbf{x} + \mathbf{0} = \mathbf{x} + (\mathbf{v} + \mathbf{y}) = (\mathbf{x} + \mathbf{v}) + \mathbf{y} = \mathbf{0} + \mathbf{y} = \mathbf{y}.$$

(**b**) We have

$$\mathbf{v} + (-1) \cdot \mathbf{v} = 1 \cdot \mathbf{v} + (-1) \cdot \mathbf{v} = (1 + (-1)) \cdot \mathbf{v} = \mathbf{0} \cdot \mathbf{v} = \mathbf{0},$$

as proved in class. Similarly, $(-1) \cdot \mathbf{v} + \mathbf{v} = 0$. Since the opposite element, as we just proved, is unique, we have $(-1) \cdot \mathbf{v} = -\mathbf{v}$.