MA 1111: Linear Algebra I
Homework problems due December 10, 2014
Please put your name and student number on each of the sheets you are handing in. (Or, ideally, staple them together).

1. A sequence b_{0}, b_{1}, \ldots is defined by $b_{0}=0, b_{1}=1, b_{n+1}=3 b_{n}-b_{n-1}$.
(a) Show that that $\left(\begin{array}{cc}0 & 1 \\ -1 & 3\end{array}\right)^{n}\binom{0}{1}=\binom{b_{n}}{b_{n+1}}$.
(b) Find eigenvalues and eigenvectors of $\left(\begin{array}{cc}0 & 1 \\ -1 & 3\end{array}\right)$ and use them to obtain an explicit formula for b_{n}.
2. Does there exist a change of basis making the matrix $\left(\begin{array}{ccc}2 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 1\end{array}\right)$ diagonal? Why?
3. Prove that for every 2×2-matrix A we have

$$
A^{2}-\operatorname{tr}(A) \cdot A+\operatorname{det}(A) \cdot I_{2}=0
$$

4. Assume that for a 2×2-matrix A we have $A^{3}=0$. Show that in that case we already have $A^{2}=0$.
