Solutions to this problem sheet are to be handed in after our class at 3pm on Thursday. Please attach a cover sheet with a declaration http://tcd-ie.libguides.com/plagiarism/declaration confirming that you know and understand College rules on plagiarism.

Please put your name and student number on each of the sheets you are handing in. (Or, ideally, staple them together).

1. For each of the following choices of matrices A and B find out which of the matrices $A+B$, $B A$, and $A B$ are defined, and compute those which are defined:
(a) $\mathrm{A}=\left(\begin{array}{ll}2 & 4 \\ 2 & 1\end{array}\right), \mathrm{B}=\binom{2}{1}$;
(b) $A=\left(\begin{array}{lll}2 & 0 & 3 \\ 1 & 1 & 1\end{array}\right), B=\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$;
(c) $A=\left(\begin{array}{lll}5 & 1 & 1 \\ 1 & 0 & 2\end{array}\right), B=\left(\begin{array}{ll}1 & 4 \\ 0 & 1 \\ 2 & 5\end{array}\right)$;
(d) $A=\left(\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right), B=\left(\begin{array}{ll}2 & 4 \\ 1 & 1\end{array}\right)$.
2. Which of the following matrices are invertible? Compute inverses for them. (a) $\left(\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right)$; (b) $\left(\begin{array}{ll}6 & 4 \\ 3 & 2\end{array}\right) ;(\mathbf{c})\left(\begin{array}{lll}1 & 1 & 3 \\ 1 & 2 & 0\end{array}\right) ;(\mathbf{d})\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9\end{array}\right)$.
3. (a) Show that if A and B are matrices for which both products $A B$ and $B A$ are defined, then both products $A B$ and $B A$ are square matrices (maybe of different sizes).
(b) For an $n \times n$-matrix A, its trace $\operatorname{tr}(A)$ is defined as the sum of diagonal elements,

$$
\operatorname{tr}(A)=A_{11}+A_{22}+\cdots+A_{n n}
$$

Show that if U is an $n \times m$-matrix, and V is an $m \times n$-matrix, then $\operatorname{tr}(U V)=\operatorname{tr}(V U)$. Explain why this does not contradict the example from class where we found two 2×2-matrices for which $\mathrm{UV} \neq \mathrm{VU}$.
4. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. (a) Write down explicitly the matrix $A^{2}=A \cdot A$. (b) Show that if $A^{2}=I_{2}$, then either $A=I_{2}$, or $A=-I_{2}$, or $\operatorname{tr}(A)=0$. (c) Give an example of a matrix $A \neq \pm I_{2}$ for which $A^{2}=I_{2}$.
5. Give an example of a 2×3-matrix A and a 3×2-matrix B for which $A B=I_{2}$. (Hint: in this case, there is already an example with matrices with entries entries from $\{0,1\}$).

