1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 13

LINEAR MAPS

A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is called a *linear map* if two conditions are satisfied:

- for all $v_1, v_2 \in \mathbb{R}^n$, we have $f(v_1 + v_2) = f(v_1) + f(v_2)$;
- for all $v \in \mathbb{R}^n$ and all $c \in \mathbb{R}$, we have $f(c \cdot v) = c \cdot f(v)$.

Talking about matrix products, I suggested to view the product Ax as a function from \mathbb{R}^n to \mathbb{R}^m . It turns out that all linear maps are like that. **Theorem.** Let f be a linear map from \mathbb{R}^n to \mathbb{R}^m . Then there exists a matrix A such that f(x) = Ax for all x.

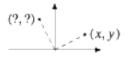
Proof. Let $\mathbf{e}_1, \ldots, \mathbf{e}_n$ be the standard unit vectors in \mathbb{R}^n : the vector \mathbf{e}_i has its *i*-th coordinate equal to 1, and other coordinates equal to 0. Let $v_k = f(\mathbf{e}_k)$, and let us define a matrix A by putting together the vectors v_1, \ldots, v_n : $A = (v_1 | v_2 | \cdots | v_n)$. I claim that for every x we have f(x) = Ax. Indeed, we have

$$f(\mathbf{x}) = f(\mathbf{x}_1\mathbf{e}_1 + \dots + \mathbf{x}_n\mathbf{e}_n) = \mathbf{x}_1f(\mathbf{e}_1) + \dots + \mathbf{x}_nf(\mathbf{e}_n) =$$
$$= \mathbf{x}_1A\mathbf{e}_1 + \dots + \mathbf{x}_nA\mathbf{e}_n = A(\mathbf{x}_1\mathbf{e}_1 + \dots + \mathbf{x}_n\mathbf{e}_n) = A\mathbf{x}.$$

LINEAR MAPS: EXAMPLE

So far all maps that we considered were of the form $x \mapsto Ax$, so the result that we proved is not too surprising. Let me give an example of a linear map of geometric origin.

Let us consider the map that rotates every point counterclockwise through the angle 90° about the origin:



Since the standard unit vector \mathbf{e}_1 is mapped to \mathbf{e}_2 , and \mathbf{e}_2 is mapped to $-\mathbf{e}_1$, the matrix that corresponds to this map is $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. This means that each vector $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ is mapped to $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}$. This can also be computed directly by inspection.

LINEAR INDEPENDENCE, SPAN, AND LINEAR MAPS

Let v_1, \ldots, v_k be vectors in \mathbb{R}^n . Consider the $n \times k$ -matrix A whose columns are these vectors.

Let us relate linear independence and the spanning property to linear maps. We shall now show that

- the vectors v₁,..., v_k are linearly independent if and only if the map from ℝ^k to ℝⁿ that send each vector x to the vector Ax is *injective*, that is maps different vectors to different vectors;
- the vectors v₁,..., v_k span ℝⁿ if and only if the map from ℝ^k to ℝⁿ that send each vector x to the vector Ax is surjective, that is something is mapped to every vector b in ℝⁿ.

Indeed, we can note that injectivity means that Ax = b has at most one solution for each b, which is equivalent to the absence of free variables, which is equivalent to the system Ax = 0 having only the trivial solution, which we know to be equivalent to linear independence. Also, surjectivity means that Ax = b has solutions for every b, which we know to be equivalent to the spanning property.

Dr. Vladimir Dotsenko (Vlad)

1111: LINEAR ALGEBRA

SUBSPACES OF \mathbb{R}^n

A non-empty subset U of \mathbb{R}^n is called a *subspace* if the following properties are satisfied:

- whenever $v, w \in U$, we have $v + w \in U$;
- whenever $v \in U$, we have $c \cdot v \in U$ for every scalar c.

Of course, this implies that every linear combination of several vectors in U is again in $U. \ \ \,$

Let us give some examples. Of course, there are two very trivial examples: $U = \mathbb{R}^n$ and $U = \{0\}$.

The line y = x in \mathbb{R}^2 is another example.

Any line or 2D plane containing the origin in \mathbb{R}^3 would also give an example, and these give a general intuition of what the word "subspace" should make one think of.

The set of all vectors with integer coordinates in \mathbb{R}^2 is an example of a subset which is NOT a subspace: the first property is satisfied, but the second one certainly fails.

SUBSPACES OF \mathbb{R}^n : TWO MAIN EXAMPLES

Let A be an $m \times n$ -matrix. Then the solution set to the homogeneous system of linear equations Ax = 0 is a subspace of \mathbb{R}^n . Indeed, it is non-empty because it contains x = 0. We also see that if Av = 0 and Aw = 0, then A(v + w) = Av + Aw = 0, and similarly if Av = 0, then $A(c \cdot v) = c \cdot Av = 0$.

Let v_1, \ldots, v_k be some given vectors in \mathbb{R}^n . Their linear span $\operatorname{span}(v_1, \ldots, v_k)$ is the set of all possible linear combinations $c_1v_1 + \ldots + c_kv_k$. The linear span of $k \ge 1$ vectors is a subspace of \mathbb{R}^n . Indeed, it is manifestly non-empty, and closed under sums and scalar multiples.

The example of the line y = x from the previous slide fits into both contexts. First of all, it is the solution set to the system of equations $A\mathbf{x} = 0$, where $A = \begin{pmatrix} 1 & -1 \end{pmatrix}$, and $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$. Second, it is the linear span of the vector $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. We shall see that it is a general phenomenon: these two descriptions are equivalent.

Dr. Vladimir Dotsenko (Vlad)

111: Linear Algebra I

SUBSPACES OF \mathbb{R}^n : TWO MAIN EXAMPLES

Consider the matrix $A = \begin{pmatrix} 1 & -2 & 1 & 0 \\ 3 & -5 & 3 & -1 \end{pmatrix}$, and the corresponding system of equations Ax = 0. The reduced row echelon form of this matrix is $\begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 0 & -1 \end{pmatrix}$, so the free unknowns are x_3 and x_4 . Setting $x_3 = s$, $x_4 = t$, we obtain the solution $\begin{pmatrix} -s + 2t \\ t \\ s \\ t \end{pmatrix}$, which we can represent as $s\begin{pmatrix} -1\\0\\1\\0 \end{pmatrix} + t\begin{pmatrix} 2\\1\\0\\1 \end{pmatrix}$. We conclude that the solution set to the system of equations is the linear span of the vectors $v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$.

SUBSPACES OF \mathbb{R}^n : TWO MAIN EXAMPLES

Let us implement this approach in general. Suppose A is an $m \times n$ -matrix. As we know, to describe the solution set for Ax = 0 we bring A to its reduced row echelon form, and use free unknowns as parameters. Let x_{i_1} , \ldots , x_{i_k} be free unknowns. For each $j = 1, \ldots, k$, let us define the vector v_j to be the solution obtained by putting the *j*-th free unknown to be equal to 1, and all others to be equal to zero. Note that the solution that corresponds to arbitrary values $x_{i_1} = t_1, \ldots, x_{i_k} = t_k$ is the linear combination $t_1v_1 + \cdots + t_kv_k$. Therefore the solution set of Ax = 0 is the linear span of v_1, \ldots, v_k .

Note that in fact the vectors v_1, \ldots, v_k constructed above are linearly independent. Indeed, the linear combination $t_1v_1 + \cdots + t_kv_k$ has t_i in the place of *i*-th free unknown, so if this combination is equal to zero, then all coefficients must be equal to zero. Therefore, it is sensible to say that these vectors form a basis in the solution set: every vector can be obtained as their linear combination, and they are linearly independent. However, we only considered bases of \mathbb{R}^n so far, and the solution set of a system of linear equations differs from \mathbb{R}^m .

Dr. Vladimir Dotsenko (Vlad)