1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 13

Linear maps

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called a linear map if two conditions are satisfied:

- for all $v_{1}, v_{2} \in \mathbb{R}^{n}$, we have $f\left(v_{1}+v_{2}\right)=f\left(v_{1}\right)+f\left(v_{2}\right)$;
- for all $v \in \mathbb{R}^{n}$ and all $c \in \mathbb{R}$, we have $f(c \cdot v)=c \cdot f(v)$.

Talking about matrix products, I suggested to view the product $A x$ as a function from \mathbb{R}^{n} to \mathbb{R}^{m}. It turns out that all linear maps are like that.
Theorem. Let f be a linear map from \mathbb{R}^{n} to \mathbb{R}^{m}. Then there exists a matrix A such that $f(x)=A x$ for all x.
Proof. Let $\mathbf{e}_{1}, \ldots \mathbf{e}_{\mathbf{n}}$ be the standard unit vectors in \mathbb{R}^{n} : the vector \mathbf{e}_{i} has its i-th coordinate equal to 1 , and other coordinates equal to 0 . Let $v_{k}=f\left(\mathbf{e}_{k}\right)$, and let us define a matrix A by putting together the vectors $v_{1}, \ldots, v_{n}: A=\left(v_{1}\left|v_{2}\right| \cdots \mid v_{n}\right)$. I claim that for every x we have $f(x)=A x$. Indeed, we have

$$
\begin{aligned}
& f(x)=f\left(x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{\mathbf{n}}\right)=x_{1} f\left(\mathbf{e}_{1}\right)+\cdots+x_{n} f\left(\mathbf{e}_{\mathbf{n}}\right)= \\
& \quad=x_{1} A \mathbf{e}_{1}+\cdots+x_{n} A \mathbf{e}_{n}=A\left(x_{1} \mathbf{e}_{1}+\cdots+x_{n} \mathbf{e}_{n}\right)=A x .
\end{aligned}
$$

LINEAR MAPS: EXAMPLE

So far all maps that we considered were of the form $x \mapsto A x$, so the result that we proved is not too surprising. Let me give an example of a linear map of geometric origin.

Let us consider the map that rotates every point counterclockwise through the angle 90° about the origin:

Since the standard unit vector \mathbf{e}_{1} is mapped to \mathbf{e}_{2}, and \mathbf{e}_{2} is mapped to $-\mathbf{e}_{1}$, the matrix that corresponds to this map is $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. This means that each vector $\binom{x_{1}}{x_{2}}$ is mapped to $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{-x_{2}}{x_{1}}$. This can also be computed directly by inspection.

Linear independence, span, and Linear maps

 Let v_{1}, \ldots, v_{k} be vectors in \mathbb{R}^{n}. Consider the $n \times k$-matrix A whose columns are these vectors.Let us relate linear independence and the spanning property to linear maps. We shall now show that

- the vectors v_{1}, \ldots, v_{k} are linearly independent if and only if the map from \mathbb{R}^{k} to \mathbb{R}^{n} that send each vector x to the vector $A x$ is injective, that is maps different vectors to different vectors;
- the vectors v_{1}, \ldots, v_{k} span \mathbb{R}^{n} if and only if the map from \mathbb{R}^{k} to \mathbb{R}^{n} that send each vector x to the vector $A x$ is surjective, that is something is mapped to every vector b in \mathbb{R}^{n}.

Indeed, we can note that injectivity means that $A x=b$ has at most one solution for each b, which is equivalent to the absence of free variables, which is equivalent to the system $A x=0$ having only the trivial solution, which we know to be equivalent to linear independence.
Also, surjectivity means that $A x=b$ has solutions for every b, which we know to be equivalent to the spanning property.

Subspaces of \mathbb{R}^{n}

A non-empty subset U of \mathbb{R}^{n} is called a subspace if the following properties are satisfied:

- whenever $v, w \in U$, we have $v+w \in U$;
- whenever $v \in U$, we have $c \cdot v \in U$ for every scalar c.

Of course, this implies that every linear combination of several vectors in U is again in U.

Let us give some examples. Of course, there are two very trivial examples: $U=\mathbb{R}^{n}$ and $U=\{0\}$.
The line $y=x$ in \mathbb{R}^{2} is another example.
Any line or 2D plane containing the origin in \mathbb{R}^{3} would also give an example, and these give a general intuition of what the word "subspace" should make one think of.
The set of all vectors with integer coordinates in \mathbb{R}^{2} is an example of a subset which is NOT a subspace: the first property is satisfied, but the second one certainly fails.

SUBSPACES OF \mathbb{R}^{n} : TWO MAIN EXAMPLES

Let A be an $m \times n$-matrix. Then the solution set to the homogeneous system of linear equations $A x=0$ is a subspace of \mathbb{R}^{n}. Indeed, it is non-empty because it contains $x=0$. We also see that if $A v=0$ and $A w=0$, then $A(v+w)=A v+A w=0$, and similarly if $A v=0$, then $A(c \cdot v)=c \cdot A v=0$.
Let v_{1}, \ldots, v_{k} be some given vectors in \mathbb{R}^{n}. Their linear span $\operatorname{span}\left(v_{1}, \ldots, v_{k}\right)$ is the set of all possible linear combinations $c_{1} v_{1}+\ldots+c_{k} v_{k}$. The linear span of $k \geqslant 1$ vectors is a subspace of \mathbb{R}^{n}. Indeed, it is manifestly non-empty, and closed under sums and scalar multiples.
The example of the line $y=x$ from the previous slide fits into both contexts. First of all, it is the solution set to the system of equations $A \mathbf{x}=0$, where $A=\left(\begin{array}{ll}1 & -1\end{array}\right)$, and $\mathbf{x}=\binom{x}{y}$. Second, it is the linear span
of the vector $v=\binom{1}{1}$. We shall see that it is a general phenomenon: these two descriptions are equivalent.

SUBSPACES OF \mathbb{R}^{n} : TWO MAIN EXAMPLES

Consider the matrix $A=\left(\begin{array}{cccc}1 & -2 & 1 & 0 \\ 3 & -5 & 3 & -1\end{array}\right)$, and the corresponding system of equations $A x=0$. The reduced row echelon form of this matrix is $\left(\begin{array}{llll}1 & 0 & 1 & -2 \\ 0 & 1 & 0 & -1\end{array}\right)$, so the free unknowns are x_{3} and x_{4}. Setting $x_{3}=s$, $x_{4}=t$, we obtain the solution $\left(\begin{array}{c}-s+2 t \\ t \\ s \\ t\end{array}\right)$, which we can represent as $s\left(\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right)+t\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 1\end{array}\right)$. We conclude that the solution set to the system of equations is the linear span of the vectors $v_{1}=\left(\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right)$ and $v_{2}=\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 1\end{array}\right)$.

SUBSPACES OF \mathbb{R}^{n} : TWO MAIN EXAMPLES

Let us implement this approach in general. Suppose A is an $m \times n$-matrix. As we know, to describe the solution set for $A x=0$ we bring A to its reduced row echelon form, and use free unknowns as parameters. Let $x_{i_{1}}$, $\ldots, x_{i_{k}}$ be free unknowns. For each $j=1, \ldots, k$, let us define the vector v_{j} to be the solution obtained by putting the j-th free unknown to be equal to 1 , and all others to be equal to zero. Note that the solution that corresponds to arbitrary values $x_{i_{1}}=t_{1}, \ldots, x_{i k}=t_{k}$ is the linear combination $t_{1} v_{1}+\cdots+t_{k} v_{k}$. Therefore the solution set of $A x=0$ is the linear span of v_{1}, \ldots, v_{k}.
Note that in fact the vectors v_{1}, \ldots, v_{k} constructed above are linearly independent. Indeed, the linear combination $t_{1} v_{1}+\cdots+t_{k} v_{k}$ has t_{i} in the place of i-th free unknown, so if this combination is equal to zero, then all coefficients must be equal to zero. Therefore, it is sensible to say that these vectors form a basis in the solution set: every vector can be obtained as their linear combination, and they are linearly independent. However, we only considered bases of \mathbb{R}^{n} so far, and the solution set of a system of linear equations differs from \mathbb{R}^{m}.

