1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)
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Change of coordinates

Let V be a vector space of dimension n, and let eq,...,e, and fy,...,f, be two different bases of V. Then
we can compute coordinates of each vector v with respect to either of those bases, so that

V=x1€1+ -+ Xpeén

and
v=yifi + - +ynfn.

Our goal now is to figure out how these are related. For that, we shall need the notion of a transition matrix.
Definition 1. Let us express the vectors fq,...,f, as linear combinations of ej,...,en:

fi =aner +axey+---+amien,

f2 = ajzer +azex + -+ amaem,

fn=ainer +ae2 +---+ amnem.

The matrix (ai;) is called the transition matriz from the basis eq,...,en to the basis f1,...,fn. Its k-th
column is the column of coordinates of the vector fy relative to the basis e1,...,en.

Lemma 1. In the notation above, we have

X1 ap; a2 ... Qin Y1
X2 azy a2 ... Qan Y2
Xn an1 An2 ... Onn Yn
In plain words, if we call ey,...,en the “old basis” and f1,...,fn the “new basis”, then this system tells

us that the product of the transition matrix with the columns of new coordinates of a vector is equal to the
column of old coordinates.

Proof. The proof is fairly straightforward: we take the formula
Vv :Ulf1 +"'+ynfn»
and substitute instead of fi’s their expressions in terms of e;’s:

fi =aner +azex;+---+amiem,

fo = ajzer +axey +---+ am2em,

fo.=aine1 + anez+ -+ dmném-



What we get is

yilajier+azier+---+anien)+yz2(anzer+axer+---+anzen)+...+yn(ammer +azmer+- - +annen) =
= (anyr +anzyz2 +---+amynler +--- + (an1yr + an2yz + - + AnnyYnlen.

Since we know that coordinates are uniquely defined, we conclude that

aityr + a2y + -+ anYyn = X1,

An1ytr + an2yz + -+ QnnYn = Xn,

which is what we want to prove. [
If we denote, for a vector v, the column of coordinates of v with respect to the basis eq,..., e, by ve, and
also denote the transition matrix from the basis e, ..., en to the basis f1,...,fn by M ¢, then the previous

result can be written as
Ve = Me)f\)f.

Lemma 2. We have
Me, Mt g = Me,g

and
Me,fo,e = In

if dim(V) = n.
Proof. Applying the formula above twice, we have
Ve = Me 1Vt = Me Mg gVg.

But we also have
Ve = Mg gVg.

Therefore
Me,e Mt gVg = Me gVg

for every vg. From our previous classes we know that knowing Av for all vectors v completely determines
the matrix A, so M fMg g = M g as required. Since manifestly we have Mg ¢ = I, we conclude by letting
Jx = €k, k:1,...,n, that Me,fo,e:In- O

Linear maps and transformations

Definition 2. Suppose that V and W are two vector spaces. A function f: V — W is said to be a linear
map, or a linear operator, if

e for vi,vy € V, we have f(vi +v2) = f(vi) + f(v2),
e forc € R, v eV, we have f(c-v) =c-f(v).

A linear map from a vector space V to the same vector space is said to be a linear transformation of V.

Example 1. As we know, every linear map @: R™ — R¥ is given by a k x n-matrix A, so that ¢(x) = Ax.



Example 2. Let V be the vector space of all polynomials in one variable x. Consider the function X: V — V
that maps every polynomial f(x) to xf(x). This is a linear transformation of V:

x(f1(x) + f2(x)) = xfy (x) + xfa(x),
x(cf(x)) = c(xf(x)).

Let P, be the vector space of all polynomials in one variable x of degree at most n. Then the rule X as
above defines a linear map : P,, — P;,11. (Note that the target of ¢ has to be different, since multiplying
by x increases degrees).

Example 3. Let V be the vector space of all polynomials in one variable x. Consider the function D: V — V
that maps every polynomial f(x) to f’(x). This is a linear map:

(f1(x) +f2(x))" = f1(x) + f3(x),
(cf(x)) = cf’(x).

The function D define both a linear map : P, — Pn_1, and a linear transformation of P, (since the
degree of the derivative of a polynomial of degree at most n is at most n —1).



