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Change of coordinates

Let V be a vector space of dimension n, and let e1, . . . , en and f1, . . . , fn be two different bases of V. Then
we can compute coordinates of each vector v with respect to either of those bases, so that

v = x1e1 + · · ·+ xnen

and
v = y1f1 + · · ·+ ynfn.

Our goal now is to figure out how these are related. For that, we shall need the notion of a transition matrix.

Definition 1. Let us express the vectors f1, . . . , fn as linear combinations of e1, . . . , en:

f1 = a11e1 + a21e2 + · · ·+ am1em,

f2 = a12e1 + a22e2 + · · ·+ am2em,

. . .

fn = a1ne1 + a2ne2 + · · ·+ amnem.

The matrix (aij) is called the transition matrix from the basis e1, . . . , en to the basis f1, . . . , fn. Its k-th
column is the column of coordinates of the vector fk relative to the basis e1, . . . , en.

Lemma 1. In the notation above, we have
x1
x2
...
xn

 =


a11 a12 . . . a1n

a21 a22 . . . a2n

... . . .
. . .

...
an1 an2 . . . ann



y1

y2

...
yn

 .

In plain words, if we call e1, . . . , en the “old basis” and f1, . . . , fn the “new basis”, then this system tells
us that the product of the transition matrix with the columns of new coordinates of a vector is equal to the
column of old coordinates.

Proof. The proof is fairly straightforward: we take the formula

v = y1f1 + · · ·+ ynfn,

and substitute instead of fi’s their expressions in terms of ej’s:

f1 = a11e1 + a21e2 + · · ·+ am1em,

f2 = a12e1 + a22e2 + · · ·+ am2em,

. . .

fn = a1ne1 + a2ne2 + · · ·+ amnem.

1



What we get is

y1(a11e1+a21e2+· · ·+an1en)+y2(a12e1+a22e2+· · ·+an2en)+. . .+yn(a1ne1+a2ne2+· · ·+annen) =

= (a11y1 + a12y2 + · · ·+ a1nyn)e1 + · · ·+ (an1y1 + an2y2 + · · ·+ annyn)en.

Since we know that coordinates are uniquely defined, we conclude that

a11y1 + a12y2 + · · ·+ a1nyn = x1,

. . .

an1y1 + an2y2 + · · ·+ annyn = xn,

which is what we want to prove.

If we denote, for a vector v, the column of coordinates of v with respect to the basis e1, . . . , en by ve, and
also denote the transition matrix from the basis e1, . . . , en to the basis f1, . . . , fn by Me,f , then the previous
result can be written as

ve = Me,fvf .

Lemma 2. We have
Me,fMf ,g = Me,g

and
Me,fMf ,e = In

if dim(V) = n.

Proof. Applying the formula above twice, we have

ve = Me,fvf = Me,fMf ,gvg.

But we also have
ve = Me,gvg.

Therefore
Me,fMf ,gvg = Me,gvg

for every vg. From our previous classes we know that knowing Av for all vectors v completely determines
the matrix A, so Me,fMf ,g = Me,g as required. Since manifestly we have Me,e = In, we conclude by letting
gk = ek, k = 1, . . . , n, that Me,fMf ,e = In.

Linear maps and transformations

Definition 2. Suppose that V and W are two vector spaces. A function f : V → W is said to be a linear
map, or a linear operator, if

• for v1, v2 ∈ V, we have f(v1 + v2) = f(v1) + f(v2),
• for c ∈ R, v ∈ V, we have f(c · v) = c · f(v).

A linear map from a vector space V to the same vector space is said to be a linear transformation of V.

Example 1. As we know, every linear map ϕ : Rn → Rk is given by a k× n-matrix A, so that ϕ(x) = Ax.
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Example 2. Let V be the vector space of all polynomials in one variable x. Consider the function X : V → V
that maps every polynomial f(x) to xf(x). This is a linear transformation of V:

x(f1(x) + f2(x)) = xf1(x) + xf2(x),

x(cf(x)) = c(xf(x)).

Let Pn be the vector space of all polynomials in one variable x of degree at most n. Then the rule X as
above defines a linear map : Pn → Pn+1. (Note that the target of ϕ has to be different, since multiplying
by x increases degrees).

Example 3. Let V be the vector space of all polynomials in one variable x. Consider the function D : V → V
that maps every polynomial f(x) to f ′(x). This is a linear map:

(f1(x) + f2(x))
′ = f ′1(x) + f ′2(x),

(cf(x)) ′ = cf ′(x).

The function D define both a linear map : Pn → Pn−1, and a linear transformation of Pn (since the
degree of the derivative of a polynomial of degree at most n is at most n− 1).

3


