1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 19

Linear maps and transformations

Example 1. Let V be the vector space of all polynomials in one variable x. Consider the function $\alpha: \mathrm{V} \rightarrow \mathrm{V}$ that maps every polynomial $f(x)$ to $3 f(x) f^{\prime}(x)$. This is not a linear map; for example, $1 \mapsto 0, x \mapsto 3 x$, but $x+1 \mapsto 3(x+1)=3 x+3 \neq 3 x+0$.

Example 2. Consider the vector space M_{2} of all 2×2-matrices. Let us define a function $\beta: M_{2} \rightarrow M_{2}$ by the formula $\beta(X)=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right) X$. Let us check that this map is a linear transformation. Indeed, by properties of matrix products

$$
\begin{gathered}
\beta\left(X_{1}+X_{2}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(X_{1}+X_{2}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) X_{1}+\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) X_{2}=\beta\left(X_{1}\right)+\beta\left(X_{2}\right) \\
\beta(c X)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)(c X)=c\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) X=c \beta(X)
\end{gathered}
$$

Lemma 1. Suppose that f is a linear map. Then $\mathrm{f}(0)=0$, and $\mathrm{f}(-v)=-\mathrm{f}(v)$.
Proof. This follows from $0 \cdot v=0$ and $(-1) \cdot v=-v$.
Definition 1. Let $\varphi: V \rightarrow W$ be a linear map, and let e_{1}, \ldots, e_{n} and f_{1}, \ldots, f_{m} be bases of V and W respectively. Let us compute coordinates of the vectors $\varphi\left(e_{i}\right)$ with respect to the basis f_{1}, \ldots, f_{m} :

$$
\begin{gathered}
\varphi\left(e_{1}\right)=a_{11} f_{1}+a_{21} f_{2}+\cdots+a_{m 1} f_{m} \\
\varphi\left(e_{2}\right)=a_{12} f_{1}+a_{22} f_{2}+\cdots+a_{m 2} f_{m} \\
\ldots \\
\varphi\left(e_{n}\right)=a_{1 n} f_{1}+a_{2 n} f_{2}+\cdots+a_{m n} f_{m}
\end{gathered}
$$

The matrix

$$
A_{\varphi, \mathbf{e}, \mathbf{f}}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \ldots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

is called the matrix of the linear map φ with respect to the given bases. For each k, its k - th column is the column of coordinates of image $\varphi\left(e_{k}\right)$.

Similarly to how we proved it for transition matrices, we have the following result.
Lemma 2. Let $\varphi: \mathrm{V} \rightarrow \mathrm{W}$ be a linear operator, and let $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}$ and $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}}$ be bases of V and W respectively. Suppose that $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ are coordinates of some vector v relative to the basis $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}$, and
y_{1}, \ldots, y_{m} are coordinates of $\varphi(v)$ relative to the basis f_{1}, \ldots, f_{m}. In the notation above, we have

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=A_{\varphi, \mathrm{e}, \mathrm{f}}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

Proof. The proof is indeed very analogous to the one for transition matrices: we have

$$
v=x_{1} e_{1}+\cdots+x_{n} e_{n}
$$

so that

$$
\varphi(v)=x_{1} \varphi\left(e_{1}\right)+\cdots+x_{n} \varphi\left(e_{n}\right)
$$

Substituting the expansion of $f\left(e_{i}\right)$'s in terms of f_{j} 's, we get

$$
\begin{aligned}
\varphi(v)=x_{1}\left(a_{11} f_{1}+a_{21} f_{2}\right. & \left.+\cdots+a_{m 1} f_{m}\right)+\cdots+x_{n}\left(a_{1 n} f_{1}+a_{2 n} f_{2}+\cdots+a_{m n} f_{m}\right)= \\
& =\left(a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}\right) f_{1}+\cdots+\left(a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}\right) f_{n} .
\end{aligned}
$$

Since we know that coordinates are uniquely defined, we conclude that

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=y_{1} \\
\cdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=y_{n}
\end{gathered}
$$

which is what we want to prove.
Example 3. Let us consider the linear map $X: P_{2} \rightarrow P_{3}$ discussed in previous class. Let us take the bases $e_{1}=1, e_{2}=x, e_{3}=x^{2}$ of P_{2}, and the basis $f_{1}=1, f_{2}=x, f_{3}=x^{2}, f_{4}=x^{3}$ of P_{3}, and compute $A_{X, \mathbf{e}, \mathbf{f}}$. Note that $X\left(e_{1}\right)=x \cdot 1=x=f_{2}, X\left(e_{2}\right)=x \cdot x=x^{2}=f_{3}$, and $X\left(e_{3}\right)=x \cdot x^{2}=x^{3}=f_{4}$. Therefore

$$
A_{X, \mathbf{e}, \mathbf{f}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Example 4. Let us consider the linear map D: $P_{3} \rightarrow P_{3}$ and $\hat{D}: P_{3} \rightarrow P_{3}$ discussed in the previous class. Let us take the bases $e_{1}=1, e_{2}=x, e_{3}=x^{2}, e_{4}=x^{3}$ of P_{3}, and the basis $f_{1}=1, f_{2}=x, f_{3}=x^{2}$ of P_{2}, and let us compute $A_{D, \mathbf{e}, \mathbf{f}}$ and $A_{\widehat{D}, \mathbf{e}}$. Note that $D\left(e_{1}\right)=1^{\prime}=0, D\left(e_{2}\right)=x^{\prime}=1=f_{1}, D\left(e_{3}\right)=\left(x^{2}\right)^{\prime}=2 x=2 f_{2}$, and $\mathrm{D}\left(e_{4}\right)=\left(x^{3}\right)^{\prime}=3 x^{2}=3 \mathrm{f}_{3}$, and that $\hat{\mathrm{D}}\left(\mathrm{e}_{1}\right)=1^{\prime}=0, \widehat{\mathrm{D}}\left(e_{2}\right)=\mathrm{x}^{\prime}=1=\mathrm{e}_{1}, \widehat{\mathrm{D}}\left(e_{3}\right)=\left(x^{2}\right)^{\prime}=2 x=2 e_{2}$, and $\hat{\mathrm{D}}\left(e_{4}\right)=\left(x^{3}\right)^{\prime}=3 x^{2}=3 e_{3}$. Therefore

$$
A_{\mathrm{D}, \mathbf{e}, \mathbf{f}}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

and

$$
A_{\hat{\mathrm{D}}, \mathbf{e}, \mathbf{e}}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Example 5. Let us look at the linear map $\alpha: M_{2} \rightarrow M_{2}$ discussed in the beginning of this class. We consider the basis of matrix units in $M_{2}: e_{1}=E_{11}, e_{2}=E_{12}, e_{3}=E_{21}, e_{4}=E_{22}$. We have

$$
\begin{gathered}
\alpha\left(e_{1}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)=e_{1}+e_{3} \\
\alpha\left(e_{2}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right) e_{2}+e_{4} \\
\alpha\left(e_{3}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=e_{1} \\
\alpha\left(e_{4}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=e_{2}
\end{gathered}
$$

So

$$
A_{\alpha, \mathbf{e}}=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

The next statement is also similar to the corresponding one for transition matrices; it also generalises the statement that in the case of coordinate vector spaces product of matrices corresponds to composition of linear maps.

Lemma 3. Let U, V, and W be vector spaces, and let $\psi: \mathrm{U} \rightarrow \mathrm{V}$ and $\varphi: \mathrm{V} \rightarrow \mathrm{W}$ be linear operators. Finally, let $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}, \mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}}$, and $\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{k}}$ be bases of U, V, and W respectively. Then

$$
A_{\varphi \circ \psi, \mathbf{e}, \mathbf{g}}=A_{\varphi, \mathbf{f}, \mathbf{g}} A_{\psi, \mathbf{e}, \mathbf{f}} .
$$

We shall prove it in the next class.

