1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 19

Linear maps and transformations

Example 1. Let V be the vector space of all polynomials in one variable x. Consider the function $\alpha: V \to V$ that maps every polynomial f(x) to 3f(x)f'(x). This is not a linear map; for example, $1 \mapsto 0$, $x \mapsto 3x$, but $x + 1 \mapsto 3(x + 1) = 3x + 3 \neq 3x + 0$.

Example 2. Consider the vector space M_2 of all 2×2 -matrices. Let us define a function $\beta: M_2 \to M_2$ by the formula $\beta(X) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} X$. Let us check that this map is a linear transformation. Indeed, by properties of matrix products

$$\beta(X_1 + X_2) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} (X_1 + X_2) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} X_1 + \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} X_2 = \beta(X_1) + \beta(X_2),$$

$$\beta(cX) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} (cX) = c \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} X = c\beta(X).$$

Lemma 1. Suppose that f is a linear map. Then f(0) = 0, and f(-v) = -f(v).

Proof. This follows from $0 \cdot v = 0$ and $(-1) \cdot v = -v$.

Definition 1. Let $\varphi: V \to W$ be a linear map, and let e_1, \ldots, e_n and f_1, \ldots, f_m be bases of V and W respectively. Let us compute coordinates of the vectors $\varphi(e_i)$ with respect to the basis f_1, \ldots, f_m :

$$\begin{aligned} \varphi(e_1) &= a_{11}f_1 + a_{21}f_2 + \dots + a_{m1}f_m, \\ \varphi(e_2) &= a_{12}f_1 + a_{22}f_2 + \dots + a_{m2}f_m, \\ & \dots \\ \varphi(e_n) &= a_{1n}f_1 + a_{2n}f_2 + \dots + a_{mn}f_m. \end{aligned}$$

The matrix

$$A_{\varphi,\mathbf{e},\mathbf{f}} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \dots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

is called the matrix of the linear map φ with respect to the given bases. For each k, its k-th column is the column of coordinates of image $\varphi(e_k)$.

Similarly to how we proved it for transition matrices, we have the following result.

Lemma 2. Let $\varphi: V \to W$ be a linear operator, and let e_1, \ldots, e_n and f_1, \ldots, f_m be bases of V and W respectively. Suppose that x_1, \ldots, x_n are coordinates of some vector v relative to the basis e_1, \ldots, e_n , and

 y_1,\ldots,y_m are coordinates of $\varphi(v)$ relative to the basis f_1,\ldots,f_m . In the notation above, we have

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = A_{\varphi, \mathbf{e}, \mathbf{f}} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Proof. The proof is indeed very analogous to the one for transition matrices: we have

$$v = x_1 e_1 + \cdots + x_n e_n,$$

so that

$$\varphi(\mathbf{v}) = \mathbf{x}_1 \varphi(\mathbf{e}_1) + \dots + \mathbf{x}_n \varphi(\mathbf{e}_n).$$

Substituting the expansion of $f(e_i)$'s in terms of f_i 's, we get

$$\begin{aligned} \varphi(\nu) &= x_1(a_{11}f_1 + a_{21}f_2 + \dots + a_{m1}f_m) + \dots + x_n(a_{1n}f_1 + a_{2n}f_2 + \dots + a_{mn}f_m) = \\ &= (a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n)f_1 + \dots + (a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n)f_n. \end{aligned}$$

Since we know that coordinates are uniquely defined, we conclude that

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = y_1,$$

...
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = y_n,$

which is what we want to prove.

Example 3. Let us consider the linear map $X: P_2 \rightarrow P_3$ discussed in previous class. Let us take the bases $e_1 = 1, e_2 = x, e_3 = x^2$ of P_2 , and the basis $f_1 = 1, f_2 = x, f_3 = x^2, f_4 = x^3$ of P_3 , and compute $A_{X,e,f}$. Note that $X(e_1) = x \cdot 1 = x = f_2$, $X(e_2) = x \cdot x = x^2 = f_3$, and $X(e_3) = x \cdot x^2 = x^3 = f_4$. Therefore

$$A_{X,\mathbf{e},\mathbf{f}} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Example 4. Let us consider the linear map D: $P_3 \rightarrow P_3$ and \hat{D} : $P_3 \rightarrow P_3$ discussed in the previous class. Let us take the bases $e_1 = 1, e_2 = x, e_3 = x^2, e_4 = x^3$ of P_3 , and the basis $f_1 = 1, f_2 = x, f_3 = x^2$ of P_2 , and let us compute $A_{D,e,f}$ and $A_{\hat{D},e}$. Note that $D(e_1) = 1' = 0$, $D(e_2) = x' = 1 = f_1$, $D(e_3) = (x^2)' = 2x = 2f_2$, and $D(e_4) = (x^3)' = 3x^2 = 3f_3$, and that $\hat{D}(e_1) = 1' = 0$, $\hat{D}(e_2) = x' = 1 = e_1$, $\hat{D}(e_3) = (x^2)' = 2x = 2e_2$, and $\hat{D}(e_4) = (x^3)' = 3x^2 = 3e_3$. Therefore

$$A_{D,e,f} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

and

$$A_{\hat{\mathbf{D}},\mathbf{e},\mathbf{e}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Example 5. Let us look at the linear map $\alpha: M_2 \to M_2$ discussed in the beginning of this class. We consider the basis of matrix units in M_2 : $e_1 = E_{11}$, $e_2 = E_{12}$, $e_3 = E_{21}$, $e_4 = E_{22}$. We have

$$\alpha(e_1) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = e_1 + e_3,$$

$$\alpha(e_2) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} e_2 + e_4,$$

$$\alpha(e_3) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = e_1,$$

$$\alpha(e_4) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = e_2,$$

 \mathbf{SO}

$$A_{\alpha,\mathbf{e}} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

The next statement is also similar to the corresponding one for transition matrices; it also generalises the statement that in the case of coordinate vector spaces product of matrices corresponds to composition of linear maps.

Lemma 3. Let U, V, and W be vector spaces, and let $\psi: U \to V$ and $\varphi: V \to W$ be linear operators. Finally, let $e_1, \ldots, e_n, f_1, \ldots, f_m$, and g_1, \ldots, g_k be bases of U, V, and W respectively. Then

$$A_{\varphi \circ \psi, \mathbf{e}, \mathbf{g}} = A_{\varphi, \mathbf{f}, \mathbf{g}} A_{\psi, \mathbf{e}, \mathbf{f}}.$$

We shall prove it in the next class.