1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Lecture 22

Computing Fibonacci numbers

As we discussed previously, a matrix of a linear operator φ is diagonal in the system of coordinates given by the basis e_{1}, e_{2} if and only if $\varphi\left(e_{1}\right)=a_{1} e_{1}, \varphi\left(e_{2}\right)=a_{2} e_{2}$, or, in general in dimension n, if $\varphi\left(e_{1}\right)=a_{1} e_{1}$, $\ldots, \varphi\left(e_{n}\right)=a_{n} e_{n}$.

Suppose that v is a nonzero vector for which $\varphi(v)=a v$ for some scalar a. For whichever basis e_{1}, \ldots, e_{n} we may have, this means $A_{\varphi, \mathbf{e}} v_{\mathbf{e}}=\mathrm{a} \nu_{\mathbf{e}}$, or

$$
\left(A_{\varphi, v_{e}}-\mathrm{aI}_{\mathrm{n}}\right) v_{\mathrm{e}}=0
$$

This means that the matrix $A=A_{\varphi, v_{e}}-a I_{n}$ is not invertible, and that $\operatorname{det}(A)=0$. Note that $\operatorname{det}(A)$ is a polynomial expression in A of degree n. For example, for $A_{\varphi, \mathbf{e}}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$, we have

$$
\operatorname{det}(A)=a^{2}-a\left(a_{11}+a_{22}\right)+a_{11} a_{22}-a_{12} a_{21}=a^{2}-\operatorname{tr}\left(A_{\varphi, \mathbf{e}}\right)+\operatorname{det}\left(A_{\varphi, \mathbf{e}}\right)
$$

the polynomial equation we obtained before in a different way.
Therefore, the vectors that are reasonable candidates for a basis are obtained from solutions of the systems of equations $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right) x=\frac{1 \pm \sqrt{5}}{2} x$. The first of them has the general solution $\binom{x_{1}}{\frac{1+\sqrt{5}}{2} x_{1}}$, and the second one has the general solution $\binom{x_{1}}{\frac{1-\sqrt{5}}{2} x_{1}}$. Setting in each cases $x_{1}=1$, we obtain two vectors $\mathbf{e}_{1}=\binom{1}{\frac{1+\sqrt{5}}{2}}$ and $\mathbf{e}_{2}=\binom{1}{\frac{1-\sqrt{5}}{2}}$. The transition matrix from the basis of standard unit vectors $\mathbf{s}_{1}, \mathbf{s}_{2}$ to this basis is, manifestly, $M_{\mathbf{s}, \mathbf{e}}=\left(\begin{array}{cc}1 & 1 \\ \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2}\end{array}\right)$, so

$$
M_{\mathrm{s}, \mathrm{e}}^{-1}=\left(-\frac{1}{\sqrt{5}}\right)\left(\begin{array}{cc}
\frac{1-\sqrt{5}}{2} & -1 \\
\frac{-1-\sqrt{5}}{2} & 1
\end{array}\right)
$$

Since $A \mathbf{e}_{1}=\left(\frac{1+\sqrt{5}}{2}\right) \mathbf{e}_{1}$, and $A \mathbf{e}_{2}=\left(\frac{1-\sqrt{5}}{2}\right) \mathbf{e}_{2}$, the matrix of the linear transformation φ relative to the basis $\mathbf{e}_{1}, \mathbf{e}_{2}$ is

$$
M_{\mathrm{s}, \mathrm{e}}^{-1} A M_{\mathbf{s}, \mathrm{e}}=\left(\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & 0 \\
0 & \frac{1-\sqrt{5}}{2}
\end{array}\right) .
$$

Therefore,

$$
A=M_{\mathbf{s}, \mathbf{e}}\left(\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & 0 \\
0 & \frac{1-\sqrt{5}}{2}
\end{array}\right) M_{\mathrm{s}, \mathrm{e}}^{-1}
$$

and hence

$$
A^{n}=\left(M_{\mathbf{s}, \mathrm{e}}\left(\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & 0 \\
0 & \frac{1-\sqrt{5}}{2}
\end{array}\right) M_{\mathrm{s}, \mathrm{e}}^{-1}\right)^{n}=M_{\mathrm{s}, \mathrm{e}}\left(\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & 0 \\
0 & \frac{1-\sqrt{5}}{2}
\end{array}\right)^{n} M_{\mathrm{s}, \mathrm{e}}^{-1}=M_{\mathrm{s}, \mathrm{e}}\left(\begin{array}{cc}
\left(\frac{1+\sqrt{5}}{2}\right)^{n} & 0 \\
0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n}
\end{array}\right) M_{\mathrm{s}, \mathrm{e}}^{-1}
$$

Substituting the above formulas for $M_{\mathbf{s}, \mathbf{e}}$ and $M_{\mathbf{s}, \mathbf{e}}^{-1}$, we see that

$$
A^{n}=\left(\begin{array}{cc}
1 & 1 \\
\frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2}
\end{array}\right)\left(\begin{array}{cc}
\left(\frac{1+\sqrt{5}}{2}\right)^{n} & 0 \\
0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n}
\end{array}\right)\left(\begin{array}{c}
-\frac{1}{\sqrt{5}}
\end{array}\right)\left(\begin{array}{cc}
\frac{1-\sqrt{5}}{2} & -1 \\
\frac{-1-\sqrt{5}}{2} & 1
\end{array}\right)
$$

In fact, we have $\mathbf{v}_{\mathrm{n}}=A^{n} \mathbf{v}_{0}$, so

$$
\left.\begin{array}{rl}
\mathbf{v}_{\mathrm{n}}= & \left(\begin{array}{cc}
1 & 1 \\
\frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2}
\end{array}\right)\left(\begin{array}{cc}
\left(\frac{1+\sqrt{5}}{2}\right)^{n} & 0 \\
0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n}
\end{array}\right)\left(\begin{array}{c}
-\frac{1}{\sqrt{5}}
\end{array}\right)\left(\begin{array}{cc}
\frac{1-\sqrt{5}}{2} & -1 \\
\frac{-1-\sqrt{5}}{2} & 1
\end{array}\right)\binom{0}{1}= \\
= & \left(\begin{array}{cc}
1 & 1 \\
\frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2}
\end{array}\right)\left(\begin{array}{cc}
\left(\frac{1+\sqrt{5}}{2}\right)^{n} & 0 \\
0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n}
\end{array}\right)\binom{\frac{1}{\sqrt{5}}}{-\frac{1}{\sqrt{5}}}=\left(\begin{array}{cc}
1 & 1 \\
\frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2}
\end{array}\right)\binom{\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}}{-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}}= \\
& =\binom{\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)}{\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right.}
\end{array}\right) .
$$

Recalling that $\mathbf{v}_{n}=\binom{f_{n}}{f_{n+1}}$, we observe that

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

This formula is quite informative. For instance, we can remark that $\left|\frac{1-\sqrt{5}}{2}\right|<1$, so for large n the Fibonacci number f_{n} is the closest integer to $\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}$.

Next week, we shall discuss some further examples of applications of linear algebra.

