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Vector product and volumes

Theorem. For three 3D vectors u, v, and w, the volume of the
parallelepiped defined by these three vectors is equal to |u · (v ×w)|.
Proof. The volume is equal to the product of the height of the
parallelepiped by the area of the base. We may take for the base the
parallelogram defined by the vectors v and w. The theorem from the
previous slide tells us how to compute the area of the base, so it remains
to compute the height. The height is equal to the length of the projection
of u on the direction perpendicular to the base.

By an observation we made earlier, the direction perpendicular to the base
is given by the vector product n = v ×w. The length of the projection of
u on the direction of n is equal to |u|| cos θ|, where θ is equal to the angle
between u and n. Multiplying it by the area of the base, that is |v×w|, we
conclude that the volume is equal to |u||v ×w|| cos θ| = |u · (v ×w)|.
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Vector product and volumes

Let us remark that the formula for the volume that we just proved does
agree very well with the property

u · (v ×w) = −v · (u×w)

we proved earlier: it tells that these two quantities do have the same
absolute value, the volume of the corresponding parallelepiped.

This is another example of a “sanity check” one can perform on a formula.
It is very useful to incorporate doing things like that in your repertoire of
mathematical skills, it often allows to catch silly mistakes / misprints in
solutions.

Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Michaelmas Term 2015 3 / 11



An unexpected application

Suppose that a cube a× a× a is positioned in 3D in such a way that all
its vertices have integer coordinates (but edges do not have to be parallel
to the grid lines). It turns out that then a is an integer. (This is so not
true in 2D).

Let u, v, and w be the vectors connecting one of the vertices of the cube
with its neighbours. All these vectors have integer coordinates. Therefore,
u · (v ×w) is an integer, so a3, the volume of the cube, is an integer M.
Also, u · u is an integer, so a2, the square of the length of the side of our
cube, is an integer N. But this implies that a = a3

a2
= M

N , a fraction with
both numerator and the denominator being integers! A fraction whose
square is an integer must be an integer (otherwise the denominator will
never cancel).
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Outline of another application

Another important application of vector products is in the definition of
quaternions, an omnipresent algebraic system discovered by William Rowan
Hamilton while walking along the Royal Canal on October 16, 1843. This
system consists of formal expressions of the form c + v, where c is a
scalar, and v is a 3D vector. (Talk about adding apples to oranges. . . )

The product q1q2 of two quaternions q1 = c1 + v1 and q2 = c2 + v2 is
defined as follows:

(c1 + v1)(c2 + v2) = (c1c2 − v1 · v2) + (c1v2 + c2v1 + v1 × v2).

It turns out that the equation (q1q2)q3 = q1(q2q3) holds for any three
quaternions. This, and the fact that for each quaternion q one can find a
multiplicative inverse 1/q, makes them a truly exceptional algebraic
system. There are notable appearances of quaternions in mathematical
physics, geometry, computer science etc.
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Vectors and lines

Using vectors, it is very easy to describe straight lines algebraically. If we
are given a point P belonging to the line `, and v is a nonzero vector

parallel to `, then for each point X on `, the vector
−→
PX is parallel to v. In

other words, we have −→
PX = tv

for some number t.

Let us fix a point O, and consider, for each point A, the vector
−→
OA, the

position vector of A relative to O. Then the previous equation can be
written as −→

OX =
−→
OP + tv.

If the point O is the origin of the coordinate system, that is all its
coordinates are equal to zero, this equation expresses coordinates of X as
functions of parameter t, and is called the parametric equation of the
line `.
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Scalar product and planes

Using vectors, we can also describe 2D planes in 3D. If we are given a
point P belonging to the plane α, and n is a nonzero vector perpendicular

to α, then for each point X in α, the vector
−→
PX is perpendicular to n. In

other words, we have −→
PX · n = 0 .

Using the relative position vectors, we can rewrite that equation as

(
−→
OX −

−→
OP) · n = 0, or

−→
OX · n =

−→
OP · n .

If the point O is the origin of the coordinate system, this equation becomes
an equation of the form Ax + By + Cz = D, where x , y , z are coordinates
of the varying point X . This is called the standard equation of the plane α.
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Systems of linear equations
Geometrically, we are quite used to the fact that if we take two planes in
3D which are not parallel, their intersection is a line. With our new
algebraic approach, this means that if we take a system of two equations{

A1x + B1y + C1z = D1,

A2x + B2y + C2z = D2,

for which the triples (A1,B1,C1) and (A2,B2,C2) are not proportional,
then the solution set of this system can be described parametrically

x = x0 + at,

y = y0 + bt,

z = z0 + ct.

Our next goal is to develop algebraic formalism for systems of linear
equations with arbitrary numbers of equations and unknowns that would
allow to extend our 3D geometric intuition to higher dimensional spaces.
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Systems of linear equations

A linear equation with unknowns x1, . . . , xn is an equation of the form

A1x1 + A2x2 + · · ·+ Anxn = B,

where A1, . . . , An, and B are known numbers.
We shall develop a method for solving systems of m simultaneous linear
equations with n unknowns

A1,1x1 + A1,2x2 + · · ·+ A1,nxn = B1,

A2,1x1 + A2,2x2 + · · ·+ A2,nxn = B2,

. . .

Am,1x1 + Am,2x2 + · · ·+ Am,nxn = Bm,

where Ai ,j(1 ≤ i ≤ m, 1 ≤ j ≤ n), and Bi (1 ≤ i ≤ m) are known numbers.
To save space, we shall often write Aij instead of Ai ,j , implicitly assuming
the comma between i and j (and of course taking care to never multiply i
by j in this context!)
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Gauss–Jordan elimination
The most common technique for solving simultaneous systems of linear
equations is Gauss–Jordan elimination. Anyone who ever tried to solve a
system of linear equations probably did something of that sort, carefully
eliminating one variable after another. We shall formulate this recipe in
the form of an algorithm, that is a sequence of instructions that a person
(or a computer) can perform mechanically, ending up with a solution to
the given system.

For convenience, we shall not carry around the symbols representing the
unknowns, and will encode the given system of linear equations by
m × (n + 1)-matrix of coefficients

A =


A11 A12 · · · A1n B1

A21 A22 · · · A2n B2
... . . .

. . . . . .
...

Am1 Am2 · · · Amn Bm
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From equations to matrices

For example, if we consider the system of equations
x1 + 2x2 + x3 + x4 + x5 = 1,

−3x1 − 6x2 − 2x3 − x5 = −3,

2x1 + 4x2 + 2x3 + x4 + 3x5 = −3,

then the corresponding matrix is

A =

 1 2 1 1 1 1
−3 −6 −2 0 −1 −3
2 4 2 1 3 −3


(note the zero entry that indicates that x4 is not present in the second

equation).
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