1111: Linear Algebra I

Dr. Vladimir Dotsenko (Vlad)

Michaelmas Term 2015

Matrix product

One definition is immediately built upon what we just defined before. Let A be an $m \times n$-matrix, and B an $n \times k$-matrix. Their product $A \cdot B$, or $A B$, is defined as follows: it is the $m \times k$-matrix C whose columns are obtained by computing the products of A with columns of B :

$$
A \cdot\left(\mathbf{b}_{1}\left|\mathbf{b}_{2}\right| \ldots \mid \mathbf{b}_{k}\right)=\left(A \cdot \mathbf{b}_{1}\left|A \cdot \mathbf{b}_{2}\right| \ldots \mid A \cdot \mathbf{b}_{k}\right)
$$

Another definition states that the product of an $m \times n$-matrix A and an $n \times k$-matrix B is the $m \times k$-matrix C with entries

$$
C_{i j}=A_{i 1} B_{1 j}+A_{i 2} B_{2 j}+\cdots+A_{i n} B_{n j}
$$

(here i runs from 1 to m, and j runs from 1 to k). In other words, $C_{i j}$ is the "dot product" of the i-th row of A and the j-th column of B.

Examples

Let us take $U=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), V=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), W=\left(\begin{array}{lll}2 & 3 & 1 \\ 5 & 2 & 0\end{array}\right)$.
Note that the products $U \cdot U, U \cdot V, V \cdot U, V \cdot V, U \cdot W$, and $V \cdot W$ are defined, while the products $W \cdot U, W \cdot V$, and $W \cdot W$ are not defined.
We have $U \cdot U=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right), U \cdot V=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), V \cdot U=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$,
$V \cdot V=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right), U \cdot W=\left(\begin{array}{lll}5 & 2 & 0 \\ 0 & 0 & 0\end{array}\right), V \cdot W=\left(\begin{array}{lll}0 & 0 & 0 \\ 2 & 3 & 1\end{array}\right)$.
In particular, even though both matrices $U \cdot V$ and $V \cdot U$ are defined, they are not equal.

Matrix product: Third definition

However, these two definitions appear a bit ad hoc, without no good reason to them. The third definition, maybe a bit more indirect, in fact sheds light on why the matrix product is defined in exactly this way.
Let us view, for a given $m \times n$-matrix A, the product $A \cdot \mathbf{x}$ as a rule that takes a vector \mathbf{x} with n coordinates, and computes out of it another vector with m coordinates, which is denoted by $A \cdot \mathbf{x}$. Then, given two matrices, an $m \times n$-matrix A and an $n \times k$-matrix B, from a given vector \mathbf{x} with k coordinates, we can first use the matrix B to compute the vector $B \cdot \mathbf{x}$ with n coordinates, and then use the matrix A to compute the vector $A \cdot(B \cdot \mathbf{x})$ with m coordinates.
By definition, the product of the matrices A and B is the matrix C satisfying

$$
C \cdot \mathbf{x}=A \cdot(B \cdot \mathbf{x}) .
$$

Equivalence of the definitions

The first and the second definition are obviously equivalent: the entry in the i-th row and the j-th column of the matrix

$$
\left(A \cdot \mathbf{b}_{1}\left|A \cdot \mathbf{b}_{2}\right| \ldots \mid A \cdot \mathbf{b}_{k}\right)
$$

is manifestly equal to $A_{i 1} B_{1 j}+A_{i 2} B_{2 j}+\cdots+A_{i n} B_{n j}$. (Note that
is precisely \mathbf{b}_{j}, the j-th column of B).

Equivalence of the definitions

For the third definition, note that the property $C \cdot \mathbf{x}=A \cdot(B \cdot \mathbf{x})$ must hold for all \mathbf{x}, in particular for $\mathbf{x}=\mathbf{e}_{j}$, the standard unit vector which has the j-th coordinate equal to 1 , and all other coordinates equal to zero.

Note that for each matrix M the vector $M \cdot \mathbf{e}_{j}$ (if defined) is equal to the j-th column of M. In particular, $A \cdot\left(B \cdot \mathbf{e}_{j}\right)=A \cdot \mathbf{b}_{j}$. Therefore, we must use as C the matrix $A \cdot B$ from the first definition (whose columns are the vectors $\left.A \cdot \mathbf{b}_{j}\right)$: only in this case $C \cdot \mathbf{e}_{j}=A \cdot \mathbf{b}_{j}=A \cdot\left(B \cdot \mathbf{e}_{j}\right)$ for all j. To show that $C \cdot \mathbf{x}=A \cdot(B \cdot \mathbf{x})$ for all vectors \mathbf{x}, we note that such a vector can be represented as $x_{1} \mathbf{e}_{1}+\cdots+x_{k} \mathbf{e}_{k}$, and then we can use properties of products of matrices and vectors:

$$
\begin{aligned}
& A \cdot(B \cdot \mathbf{x})=A \cdot\left(B \cdot\left(x_{1} \mathbf{e}_{1}+\cdots+x_{k} \mathbf{e}_{k}\right)\right)= \\
& =A \cdot\left(x_{1}\left(B \cdot \mathbf{e}_{1}\right)+\cdots+x_{k}\left(B \cdot \mathbf{e}_{k}\right)\right)=x_{1} A \cdot\left(B \cdot \mathbf{e}_{1}\right)+\cdots+x_{k} A \cdot\left(B \cdot \mathbf{e}_{k}\right)= \\
& \quad=x_{1} C \cdot \mathbf{e}_{1}+\cdots+x_{k} C \cdot \mathbf{e}_{k}=C \cdot\left(x_{1} \mathbf{e}_{1}+\cdots+x_{k} \mathbf{e}_{k}\right)=C \cdot \mathbf{x} .
\end{aligned}
$$

Properties of the matrix product

Let us show that the matrix product we defined satisfies the following properties (whenever all matrix operations below make sense):

$$
\begin{gathered}
A \cdot(B+C)=A \cdot B+A \cdot C, \\
(A+B) \cdot C=A \cdot C+B \cdot C, \\
(c \cdot A) \cdot B=c \cdot(A \cdot B)=A \cdot(c \cdot B), \\
(A \cdot B) \cdot C=A \cdot(B \cdot C)
\end{gathered}
$$

All these proofs can proceed in the same way: pick a "test vector" \mathbf{x}, multiply both the right and the left by it, and test that they agree. (Since we can take $\mathbf{x}=\mathbf{e}_{j}$ to single out individual columns, this is sufficient to prove equality).
For example, the first equality follows from

$$
\begin{aligned}
& (A \cdot(B+C)) \cdot \mathbf{x}=A \cdot((B+C) \cdot \mathbf{x})=A \cdot(B \cdot \mathbf{x}+C \cdot \mathbf{x})= \\
& A \cdot(B \cdot \mathbf{x})+A \cdot(C \cdot \mathbf{x})=(A \cdot B) \cdot \mathbf{x}+(A \cdot C) \cdot \mathbf{x}=(A \cdot B+A \cdot C) \cdot \mathbf{x}
\end{aligned}
$$

The identity matrix

Let us also define, for each n, the identity matrix I_{n}, which is an $n \times n$-matrix whose diagonal elements are equal to 1 , and all other elements are equal to zero.

For each $m \times n$-matrix A, we have $I_{m} \cdot A=A \cdot I_{n}=A$. This is true because for each vector \mathbf{x} of height p, we have $I_{p} \cdot \mathbf{x}=\mathbf{x}$. (The matrix I_{p} does not change vectors; that is why it is called the identity matrix). Therefore,

$$
\begin{aligned}
& \left(I_{m} \cdot A\right) \cdot \mathbf{x}=I_{m} \cdot(A \cdot \mathbf{x})=A \cdot \mathbf{x} \\
& \left(A \cdot I_{n}\right) \cdot \mathbf{x}=A \cdot\left(I_{n} \cdot \mathbf{x}\right)=A \cdot \mathbf{x}
\end{aligned}
$$

