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Matrix product

One definition is immediately built upon what we just defined before. Let
A be an m × n-matrix, and B an n × k-matrix. Their product A · B, or
AB, is defined as follows: it is the m × k-matrix C whose columns are
obtained by computing the products of A with columns of B:

A · (b1 | b2 | . . . | bk) = (A · b1 | A · b2 | . . . | A · bk)

Another definition states that the product of an m × n-matrix A and an
n × k-matrix B is the m × k-matrix C with entries

Cij = Ai1B1j + Ai2B2j + · · ·+ AinBnj

(here i runs from 1 to m, and j runs from 1 to k). In other words, Cij is
the “dot product” of the i-th row of A and the j-th column of B.
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Examples

Let us take U =

(
0 1
0 0

)
, V =

(
0 0
1 0

)
, W =

(
2 3 1
5 2 0

)
.

Note that the products U · U, U · V , V · U, V · V , U ·W , and V ·W are
defined, while the products W · U, W · V , and W ·W are not defined.

We have U · U =

(
0 0
0 0

)
, U · V =

(
1 0
0 0

)
, V · U =

(
0 0
0 1

)
,

V · V =

(
0 0
0 0

)
, U ·W =

(
5 2 0
0 0 0

)
, V ·W =

(
0 0 0
2 3 1

)
.

In particular, even though both matrices U · V and V · U are defined, they
are not equal.
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Matrix product: third definition

However, these two definitions appear a bit ad hoc, without no good
reason to them. The third definition, maybe a bit more indirect, in fact
sheds light on why the matrix product is defined in exactly this way.

Let us view, for a given m × n-matrix A, the product A · x as a rule that
takes a vector x with n coordinates, and computes out of it another vector
with m coordinates, which is denoted by A · x. Then, given two matrices,
an m × n-matrix A and an n × k-matrix B, from a given vector x with k
coordinates, we can first use the matrix B to compute the vector B · x
with n coordinates, and then use the matrix A to compute the vector
A · (B · x) with m coordinates.

By definition, the product of the matrices A and B is the matrix C
satisfying

C · x = A · (B · x) .
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Equivalence of the definitions

The first and the second definition are obviously equivalent: the entry in
the i-th row and the j-th column of the matrix

(A · b1 | A · b2 | . . . | A · bk)

is manifestly equal to Ai1B1j + Ai2B2j + · · ·+ AinBnj . (Note that


B1j

B2j
...

Bnj


is precisely bj , the j-th column of B).
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Equivalence of the definitions

For the third definition, note that the property C · x = A · (B · x) must
hold for all x, in particular for x = ej , the standard unit vector which has
the j-th coordinate equal to 1, and all other coordinates equal to zero.

Note that for each matrix M the vector M · ej (if defined) is equal to the
j-th column of M. In particular, A · (B · ej) = A · bj . Therefore, we must
use as C the matrix A · B from the first definition (whose columns are the
vectors A · bj): only in this case C · ej = A · bj = A · (B · ej) for all j . To
show that C · x = A · (B · x) for all vectors x, we note that such a vector
can be represented as x1e1 + · · ·+ xkek , and then we can use properties of
products of matrices and vectors:

A · (B · x) = A · (B · (x1e1 + · · ·+ xkek)) =

= A · (x1(B · e1) + · · ·+ xk(B · ek)) = x1A · (B · e1) + · · ·+ xkA · (B · ek) =

= x1C · e1 + · · ·+ xkC · ek = C · (x1e1 + · · ·+ xkek) = C · x.
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Properties of the matrix product
Let us show that the matrix product we defined satisfies the following
properties (whenever all matrix operations below make sense):

A · (B + C ) = A · B + A · C ,

(A + B) · C = A · C + B · C ,

(c · A) · B = c · (A · B) = A · (c · B),

(A · B) · C = A · (B · C )

All these proofs can proceed in the same way: pick a “test vector” x,
multiply both the right and the left by it, and test that they agree. (Since
we can take x = ej to single out individual columns, this is sufficient to
prove equality).

For example, the first equality follows from

(A · (B + C )) · x = A · ((B + C ) · x) = A · (B · x + C · x) =

A · (B · x) + A · (C · x) = (A · B) · x + (A · C ) · x = (A · B + A · C ) · x
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The identity matrix

Let us also define, for each n, the identity matrix In, which is an
n × n-matrix whose diagonal elements are equal to 1, and all other
elements are equal to zero.

For each m× n-matrix A, we have Im ·A = A · In = A. This is true because
for each vector x of height p, we have Ip · x = x. (The matrix Ip does not
change vectors; that is why it is called the identity matrix). Therefore,

(Im · A) · x = Im · (A · x) = A · x,
(A · In) · x = A · (In · x) = A · x .
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