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Elementary matrices

Let us define elementary matrices. By definition, an elementary matrix is
an n × n-matrix obtained from the identity matrix In by one elementary
row operation.

Recall that there were elementary operations of three types: swapping
rows, re-scaling rows, and combining rows. This leads to elementary
matrices Sij , obtained from In by swapping rows i and j , Ri (c), obtained
from In by multiplying the row i by c , and Eij(c), obtained from the
identity matrix by adding to the row i the row j multiplied by c .

Exercise. Write these matrices explicitly.
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Main property of elementary matrices

Our definition of elementary matrices may appear artificial, but we shall
now see that it agrees wonderfully with the definition of the matrix
product.

Theorem. Let E be an elementary matrix obtained from In by a certain
elementary row operation E , and let A be some n × k-matrix. Then the
result of the row operation E applied to A is equal to E · A.

Proof. By inspection, or by noticing that elementary row operations
combine rows, and the matrix product In ·A = A computes dot products of
rows with columns, so an operation on rows of the first factor results in
the same operation on rows of the product.
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Invertible matrices
An m × n-matrix A is said to be invertible, if there exists an n ×m-matrix
B such that A · B = Im and B · A = In.

Why are invertible matrices useful? If a matrix is invertible, it is very easy
to solve A · x = b! Indeed,

B · b = B · A · x = In · x = x .

Some important properties:

The equalities A · B = Im and B · A = In can hold for at most one
matrix B; indeed, if it holds for two matrices B1 and B2, we have

B1 = B1 · Im = B1 · (A · B2) = (B1 · A) · B2 = In · B2 = B2 .

Thus the matrix B can be called the inverse of A and be denoted A−1.
If both matrices A1 and A2 are invertible, and their product is defined,
then A1A2 is invertible, and (A1A2)−1 = A−1

2 A−1
1 ; indeed, for example

(A1A2)A−1
2 A−1

1 = A1(A2A
−1
2 )A−1

1 = A1Im2A
−1
1 = A1A

−1
1 = Im1 .

(As they say, “you put your socks on before putting on your shoes,
but take them off after taking off your shoes”).
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Invertible matrices

Theorem. 1. An elementary matrix is invertible.
2. If an n ×m-matrix A is invertible, then m = n.
3. An n × n-matrix A is invertible if and only if it can be represented as a
product of elementary matrices.

Proof. 1. If A = E is an elementary matrix, then for B we can take the
matrix corresponding to the inverse row operation. Then AB = In = BA
since we know that multiplying by an elementary matrix performs the
actual row operation.
2. Suppose that m 6= n, and there exist matrices A and B such that
A · B = Im and B · A = In. Without loss of generality, m > n (otherwise
swap A with B). Let us show that AB = Im leads to a contradiction. We
have E1 · E2 · · ·Ep · A = R, where R is the reduced row echelon form of A,
and Ei are appropriate elementary matrices. Therefore,

R · B = E1 · E2 · · ·Ep · A · B = E1 · E2 · · ·Ep .
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Invertible matrices

From R · B = E1 · E2 · · ·Ep, we immediately deduce

R · B · (Ep)−1 · · · (E2)−1 · (E1)−1 = Im .

But if we assume m > n, the last row of R is inevitably zero (there is no
room for m pivots), so the last row of R · B · (Ep)−1 · · · (E2)−1 · (E1)−1 is
zero too, a contradiction.

3. If A can be represented as a product of elementary matrices, it is
invertible, since products of invertible matrices are invertible. If A is
invertible, then the last row of its reduced row echelon form must be
non-zero, or we get a contradiction like in the previous argument.
Therefore, each row of the reduced row echelon form of A, and hence, by
previous result, each column of the reduced row echelon form of A, has a
pivot, so the reduced row echelon form of A is the identity matrix. We
conclude that E1 · E2 · · ·Ep · A = In, so A = (Ep)−1 · · · (E2)−1 · (E1)−1,
which is a product of elementary matrices.
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One more property of inverses

There is another useful property that is proved completely analogously:

If for an n × n-matrix A, there exists a “one-sided” inverse (that
is, B for which only one of the two conditions AB = In and
BA = In are satisfied), then B = A−1.

To prove it, it is enough to consider the case AB = In (otherwise we can
swap the roles of A and B). In this case, we proceed as before to conclude
that the reduced row echelon form of A cannot have a row of zeros, hence
that reduced row echelon form is the identity matrix, hence A is invertible.
Finally, A−1(AB) = (A−1A)B = InB = B.

Warning: we know that for m 6= n an m × n-matrix cannot be invertible,
but such a matrix can have a one-sided inverse. You will be asked to
construct an example in the next homework.
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Computing inverses

Our results lead to an elegant algorithm for computing the inverse of an
n × n-matrix A.

Form an n × (2n)-matrix (A | In). Apply the usual algorithm to compute
its reduced row echelon form. If A is invertible, the output is a matrix of
the form (In | B), where B = A−1.

Justification. If A is invertible, its reduced row echelon form is the
identity matrix In. Therefore, the computation of the reduced row echelon
form of (A | In) will produce a matrix of the form (In | B), since pivots
emerge from the left to the right. This matrix is clearly in its reduced row
echelon form. Let us take the elementary matrices corresponding to the
appropriate row operations, so that E1 · E2 · · ·Ep · A = In. This means, as
we just proved, that A−1 = E1 · E2 · · ·Ep. It remains to remark that

E1 · E2 · · ·Ep · (A | In) = (E1 · E2 · · ·Ep · A | E1 · E2 · · ·Ep),

so (In | B) = (In | E1 · E2 · · ·Ep) = (In | A−1).
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