Practice exam questions for the module 1111, Michaelmas 2015
Solutions to this problem sheet will be discussed as a part of the revision class on Thursday December 17.

1. Is the vector $\mathbf{n}=(-1,-3,4)$ parallel to the intersection line of the plane α passing through the points $(0,1,-1),(5,1,-3)$, and $(2,-3,3)$ and the plane β passing through the points $(2,1,-1),(5,1,-3)$, and $(1,-2,3)$? Why?
2. Consider the system of linear equations

$$
\left\{\begin{array}{l}
4 x_{1}-2 x_{2}+2 x_{3}=5, \\
2 x_{1}-x_{2}+3 x_{3}=2, \\
7 x_{1}-2 x_{2}+3 x_{3}=6
\end{array}\right.
$$

(a) Use Gaussian elimination to solve this system.
(b) Compute the inverse matrix using the adjugate matrix formula, and use it to solve this system.
3. Find i, j, and k for which the product $a_{61} a_{i 6} a_{1 j} a_{25} a_{54} a_{3 k}$ occurs in the expansion of the 6×6-determinant with coefficient (-1).
4. Determine all values of x for which the three vectors

$$
\left(\begin{array}{c}
2-x \\
-1 \\
5
\end{array}\right), \quad\left(\begin{array}{c}
1 \\
-x \\
5
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
1 \\
3-x
\end{array}\right)
$$

are linearly dependent.
5. Let us consider matrices B which commute with the matrix $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, that is $A B=B A$. How many rows and columns may such matrix have? Show that the set of all such matrices forms a vector space with respect to the usual matrix operations. Compute the dimension of that space.
6. Show that the map of the space P_{2} of all polynomials in x of degree at most 2 to the same space that takes every polynomial $f(x)$ to $3 x^{2} f^{\prime \prime}(x)+3 f(x-1)$ is a linear transformation, and compute the matrix of that transformation relative to the basis $1, x+1,(x+1)^{2}$.

