MA 1111: Linear Algebra I
Tutorial problems, October 7, 2015

1. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be some vectors in 3d space. Which of the following products are defined (and why):
$\mathbf{u} \times(\mathbf{v} \times \mathbf{w}), \mathbf{v} \times(\mathbf{u} \cdot \mathbf{w}), \mathbf{u} \times \mathbf{v} \times \mathbf{w},(\mathbf{u} \cdot \mathbf{w}) \cdot \mathbf{v}, \mathbf{u} \cdot(\mathbf{w} \cdot \mathbf{v}),(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}, \mathbf{u} \cdot \mathbf{v} \cdot \mathbf{w}$.
2. Show that for all 3 d vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ we have

$$
\mathbf{u} \times(\mathbf{v} \times \mathbf{w})+\mathbf{v} \times(\mathbf{w} \times \mathbf{u})+\mathbf{w} \times(\mathbf{u} \times \mathbf{v})=\mathbf{0}
$$

(Hint: in class, we proved that $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \cdot \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w}$.)
3. How many solutions, depending on the parameter \mathfrak{a}, does the following system of equations have?

$$
\left\{\begin{array}{l}
x+a y=1, \\
a x+y=0 .
\end{array}\right.
$$

4. Draw the image of the letter R from the picture under the transformation (a) $(x, y) \mapsto(x+2, y+3)$ (all first coordinates of points are increased by 2 , all second coordinates by 3$) ;(b) \ldots(x, y) \mapsto(-x, y) ;(c) \ldots(x, y) \mapsto(x, 2-y)$; (d) $\ldots(x, y) \mapsto(y, x) ; \quad(e) \ldots(x, y) \mapsto(2 x, 2 y)$; (f) $\ldots(x, y) \mapsto(x, 2 y) ;(g) \ldots(x, y) \mapsto(x, y+x)$. (h) What
 transforsmation one should apply to get the (Russian) letter Я (on the same place)?
